Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/25329
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18268/20495 (89%)
Visitors : 9041583      Online Users : 973
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/25329


    题名: Ion chemistry and source identification of coarse and fine aerosols in an urban area of eastern central India
    作者: Santosh K. Verma
    Manas K. Deb
    Yukio Suzuki
    Ying I. Tsai
    贡献者: 環境工程與科學系
    关键词: Water soluble ions
    Molecular composition
    Seasonal distribution
    Sourceidentification
    Meteorological factors
    日期: 2010-01
    上传时间: 2012-05-31 09:57:42 (UTC+8)
    摘要: This work focuses on size segregated atmospheric aerosol mass concentrations and water soluble inorganic components in Chhattisgarh, the easterncentralIndia. Investigation on the monitoring of ambient air levels of atmospheric particulates were done around a large sourceof primary anthropogenic particulate emissions: the industrial areaand coal based power plants. Chemical characterization was carried out for aerosol samples collected inurbanarea, Raipur, (21°14′N, 81°38′E) of Chhattisgarh region over a period of one year, using cascade impactor. Annual mean of mass concentration for coarse (PM2.5–10) andfine (PM2.5) aerosols were monitored to be 238.1 ± 89.9 and 167.0 ± 75.3 µg m− 3 respectively This work deals with the seasonal variation and meteorological influences of inorganic components of the aerosols viz. NO3−, Cl−and SO42−, Mg2+, Na+, K+, Ca2+and NH4+. The annual mean concentration of the inorganic components were monitored to be 3.8 ± 2.5, 8.9 ± 2.7, 10.2 ± 1.5, 2.6 ± 0.6, 8.7 ± 7.2, 4.6 ± 1.8, 16.4 ± 6.9 and 0.4 ± 0.5 µg m− 3 respectively incoarse particles and 8.2 ± 7.1, 6.8 ± 3.6, 46.5 ± 32.8, 1.7 ± 0.6, 7.4 ± 3.6, 5.9 ± 3.4, 10.2 ± 2.9, and 8.8 ± 7.7 µg m− 3 respectively infine particles, for the above ions. The average distribution of nitrate and sulphate in PM2.5–10 were found to be 1.6 and 4.2% andin PM2.5 were 4.9 and 27.9% respectively indicating the dominance of sulphate in both PM2.5–10and PM2.5 particles. Here, industrial emission plays important role for contribution of PM2.5 particle loading in the atmosphere. The cation–anion rational analysis indicated that the PM2.5–10 particles were mostly neutralized and PM2.5 particle were acidic. The major ions were mainly in the form of NaCl > CaSO4 > K2SO4 > MgSO4 > KCl > NH4Cl > Ca(NO3)2 > KNO3 > MgCl2 > Mg(NO3)2 > NH4NO3 > (NH4)2SO4incoarseaerosol particles and (NH4)2SO4 > K2SO4 > CaSO4 > NaCl > NH4NO3 > CaCl2 > KNO3 > MgCl2 > Ca(NO3)2 > KCl > NH4Cl infine particles.
    關聯: Atmospheric Research 95(1):p.65-76
    显示于类别:[Dept. of Environmental Engineering and Science (including master's program)] Periodical Articles

    文件中的档案:

    档案 描述 大小格式浏览次数
    99_102_j.pdf388KbAdobe PDF492检视/开启
    index.html0KbHTML2374检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈