Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/24653
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18258/20456 (89%)
Visitors : 5955200      Online Users : 1254
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/24653


    Title: 矽奈米微粒的組成及其於純化質體純化的應用
    Evaluation of Silica Nanocomposites for Efficient Extraction of Plasmid DNA from a Bacterial Cell Lysate
    Authors: 蕭閩誼
    Contributors: 嘉南藥理科技大學:生物科技系暨研究所
    王貞雅
    Keywords: 純化質體
    去氧核醣核酸
    四甲基矽氧烷
    胍鹽酸
    氨丙基三乙氧基矽烷
    四乙基矽氧烷
    Plasmid DNA
    Silica particals
    Tetramethoxysilane
    Purification
    Aminopropyltriethoxysilane
    Tetraethoxysilane
    Guanidine hydrochloride
    Date: 2009
    Issue Date: 2011-10-27 14:43:14 (UTC+8)
    Abstract: 摘要
    早期純化質體 DNA 方法中,大多會使用到一些有機溶劑,例如,酚(Phenol)、氯仿 (Chloroform),以上物質有可能殘留於樣品中,而影響往後之實驗。本實驗的目的利用鹼裂解緩衝溶液達到破菌之效果,並且利用溶膠-凝膠法 (Sol-Gel) 反應機制製備 TMOS、TEOS、TMOS/APTES、TEOS/APTES 之矽粒子,來純化質體 DNA。
    實驗的條件探討,會先選擇利用商業套組來純化質體 DNA,並將純化所得之質體 DNA,與所製備之矽粒子進行結合。然而,如何有效提供環境給予矽粒子吸附質體 DNA,就是實驗所探討之地方。提供之環境探討會選擇 GuHCl、CaCl2、NaCl、((NH4)2SO4) 以上之鹽類,探討鹽類濃度與 pH 值,
    結果發現實驗中以GuHCl、CaCl2 所提供環境最好。
    最後,會嘗試改變鹼裂解緩衝溶液之組成,改變之部分以中和溶液 (Solution III) 做條件探討,以 Ammonium acetate、Sodium acetate、ammonium sulfate、Tri-sodium citrate dihydrate、Potassium dihydrogen phosphate dehydrate、Potassium acetate 以上之鹽類做條件探討,其中發現以3M Potassium acetate/ 3.2M GuHCl pH5.8 矽粒子吸附質體 DNA效果最好。
    在將矽粒子所純化之質體 DNA,利用限制內切酶水解反應證明所純化之質體 DNA 適宜應用於後續之分生實驗用途。
    Abstract
    The isolation of high quality, biologically active plasmid DNA is extremely important in the field of biotechnology. The early developed traditional of plasmid isolation method rely on phenol/chloroform technique. The method is classical but with some disadvantages such as toxicity and complexes operation. So there were several methods have been developed gradually to improve the isolation of plasmid DNA such as column chromatography, selective adsorption using solid phase supports and so on. Among these methods, solid phase supports to isolate plasmid DNA was commonly used for its simplicity and practicality. Silica has been widely selected as one of effective solid phases to purify plasmid DNA for its several features of straightforward synthesis, easily modification and biocompatibility. Silica matrix-based kits for rapid isolation of plasmid DNA are also commercially available (e.g., Invitrogen, Qiagen). The binding agents are indispensable by using of silica as solid phase for adsorption and isolation of plasmid DNA in the reported works.
    Though numerous methods that prepare hybrid silica particles for adsorbing DNA have been developed, the search for the best purification procedure and comparison of different materials in terms of the extraction efficiency of DNA has gained less attention. Our research was focused on testing different silica nanocomposites and binding agents in search of the best efficiency and plasmid-binding capacities for pDNA extraction. In this work, the pET28b plasmid has been successfully concentrated and purified from a broth culture of E. coli DH5α. The purified plasmid was then tested for purity and bioactivity through its use in a number of downstream applications.
    Relation: 校內一年後公開,校外永不公開,學年度:97, 65 頁
    Appears in Collections:[Dept. of Biotechnology (including master's program)] Dissertations and Theses

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML1691View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback