English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17776/20117 (88%)
Visitors : 10960466      Online Users : 539
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.cnu.edu.tw/handle/310902800/23762

    標題: 利用磁能換能器技術處理溫泉管線中碳酸鹽泉結垢之可行性研究
    The Feasibility Study of Magnetic Transducer applied to Decarbonating Process of Pipeline Scaling in Hot spring Water
    作者: 郝柏森
    貢獻者: 環境工程與科學系(所)
    關鍵字: 溫泉
    Hot Spring
    Magnetic Effect
    Calcium Carbonate
    日期: 2010
    上傳時間: 2011-05-17 11:47:58 (UTC+8)
    摘要: 台灣地區天然條件豐富,因而產生豐富溫泉資源。溫泉資源種類繁多且不一,大致上可分為以碳酸根離子為主的碳酸氫泉、以硫酸根離子為主的硫酸鹽泉,其中又以碳酸根離子為主的碳酸氫鹽泉為台灣主要之溫泉泉質。在溫泉水進行運輸之過程中,由於溫泉水富含礦物質容易造成溫泉管線及儲存設施產生結垢情形,若不予理會,即可能導致管線爆裂、腐蝕、管線棄置及泉質惡化等相關問題產生,造成多餘人力資源上的浪費以及增加額外的營運成本。目前最常見的處理方式為添加複磷酸鹽類作為清除管線中結垢之化學添加劑,由於其成分中含有氮、磷等成分在,一旦排入河川水體,亦造成河川水體中二次污染(優養化),造成水體額外負擔,影響生態平衡。
    Formation of scale deposits in pipelines by natural waters is one of the major problems in the hot spring industry. Economical and technical difficulties are encountered due to the damage in pipes and storage equipment caused by calcium carbonate deposition. Various chemical treatments have been applied to decrease scaling such as addition of soda ash, application of scaling inhibitors, or use of ion exchange resin to replace calcium with soluble ions. These methods prove to be effective in controlling scale formation. However, these treatments remain expensive and can cause changes in the composition of natural waters.

    The present study aims to investigate the influence of the magnetic effect on calcium carbonate precipitation from synthetic hot spring water. The effect of varying different operating parameters such as flow rate (0.5 L/min and 1.0 L/min), initial [HCO3-]/[Ca+2] concentration (1.0 and 5.0), and temperature (250C and 450C) on the efficiency of the magnetic treatment was examined. The Ca(II) ion concentration, pH, conductivity and ORP of the system were monitored throughout the entire duration of the magnetic water treatment. A flow rate of 0.5 L/min, initial [HCO3-]/[Ca+2] concentration of 1.0 and operating temperature of 250C are the optimum condition in the inhibition of calcium carbonate scale formation, which gave the least value in % decrease in terms of ionic Ca(II) concentration. Additional characterization tests and calculations are needed to provide a more comprehensive understanding regarding the effect of the presence of a magnetic field on the mechanism of calcium carbonate precipitation.
    關聯: 嘉南學報(科技類) 36期:p.231-239
    Appears in Collections:[嘉南學報] 36 期 (2010)
    [環境工程與科學系(所)] 期刊論文

    Files in This Item:

    File Description SizeFormat
    36_231_239.pdf17709KbAdobe PDF361View/Open

    All items in CNU IR are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback