Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/23310
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18258/20456 (89%)
造訪人次 : 5993899      線上人數 : 828
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/23310


    標題: Lercanidipine inhibits vascular smooth muscle cell proliferation and neointimal formation via reducing intracellular reactive oxygen species and inactivating Ras-ERK1/2 signaling.
    作者: Jiunn-Ren Wu
    Shu-Fen Liou
    Shin-Wha Lin
    Chee-Yin Chai
    Zen-Kong Dai
    Jyh-Chong Liang
    Ing-Jun Chen
    Jwu-Lai Yeh
    貢獻者: 藥學系
    關鍵字: Lercanidipine
    Vascular smooth muscle cell
    Platelet-derived growth factor
    MAP kinase
    Reactive oxygen species
    日期: 2009-01
    上傳時間: 2010-12-29 15:05:21 (UTC+8)
    出版者: Academic Press Ltd Elsevier Science Ltd
    摘要: Lercanidipine, a calcium channel antagonist, is currently employed in the treatment of essential hypertension and angina pectoris. The purpose of this study was to elucidate the anti-proliferative effect of lercanidipine and to investigate the molecular role of this agent. Both in vitro studies and in a balloon injury rat carotid artery model were employed to study the effect of lercanidipine on smooth muscle cell proliferation. Lercanidipine-inhibited rat vascular smooth muscle cell (VSMC) proliferation and migration in a dose-dependent manner following stimulation of VSMC cultures with 10% fetal bovine serum (FBS) and 20 ng/ml platelet-derived growth factor (PDGF)-BB. FBS- and PDGF-BB-stimulated intracellular Ras, MEK1/2, ERK1/2, proliferative cell nuclear antigen (PCNA), and Akt activations were significantly inhibited by lercanidipine; however, lercanidipine did not affect FBS- and PDGF-BB-induced STAT3 phosphorylation. Lercanidipine also inhibited PDGF-receptor β chain phosphorylation and reactive oxygen species (ROS) production induced by PDGF-BB. Lercanidipine blocked the FBS-inducible progression through the G0/G1 to the S-phase of the cell cycle in synchronized cells. In vivo, 14 days after balloon injury, treatment with 3 and 10 mg/kg lercanidipine resulted in significant inhibition of the neointima/media ratio. Suppression of neointima formation by lercanidipine was dependent on its influence on ERK1/2 phosphorylation. These results demonstrate that lercanidipine can suppress the proliferation of VSMCs via inhibiting cellular ROS, Ras-MEK1/2-ERK1/2, and PI3K-Akt pathways, and suggesting that it may have therapeutic relevance in the prevention of human restenosis.
    關聯: Pharmacological Research 59(1):p.48-56
    顯示於類別:[藥學系(所)] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML2544檢視/開啟


    在CNU IR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋