Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/23298
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18268/20495 (89%)
Visitors : 8651242      Online Users : 898
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/23298


    题名: Bis(phenanthroimidazolyl)biphenyl derivatives as saturated blue emitters for electroluminescent devices
    作者: Chun-Jung Kuo
    Ting-Yu Li
    Chia-Chun Lien
    Charng-Hsing Liu
    Fang-Iy Wu
    Min-Jie Huang
    贡献者: 醫藥化學系
    关键词: Light-Emitting-Diodes
    Highly Efficient
    Degradation Mechanism
    Hole Injection
    Aggregation
    Anthracene
    日期: 2009
    上传时间: 2010-12-17 16:57:24 (UTC+8)
    出版者: Royal Soc Chemistry
    摘要: Blue-emitting bis(phenanthroimidazolyl)biphenyl derivatives, 4,4′-bis(1-phenyl-1H-phenanthro[9,10-d]phenanthroimidazolyl-2-yl)biphenyl (PPIP), 4,4′-bis(1-p-tolyl-1H-phenanthro[9,10-d]phenanthroimidazolyl-2-yl)biphenyl (TPIP) and 4,4′-bis(1-p-anisyl-1H-phenanthro[9,10-d]phenanthroimidazolyl-2-yl)biphenyl (APIP) were effectively synthesized in high yields from commercially available starting materials through a simple two-step procedure without using expensive noble-metal catalysts. These compounds showed excellent thermal properties with a very high glass-transition temperature of 197–200 °C and emitted intense blue light in solution with emission peaks at ca. 428 and 446 nm. By using a different hole-transporting layer, we optimized the electroluminescent efficiencies of the PPIP-based devices. All the PPIP-based devices were turned on at very low applied voltages of <3.0 V and gave pure-blue light with a Commission Internationale d'Énclairage y-coordinate value (CIEy) ≤ 0.15. Among them, device C using TCTA (4,4′,4″-tris(N-carbazolyl)triphenylamine) as the hole-transporting layer reached a very high external quantum efficiency of 6.31% and power efficiency of 7.30 lm/W. When using TPIP or APIP as the emissive layer to replace PPIP in the optimal device C, the resulting devices also exhibited very high external quantum efficiencies of more than 5%, and highly saturated blue light can be obtained from the TPIP-based device with CIEy ≤ 0.10.
    關聯: J. of Materials Chemistry 19(13):p.1865-1871
    显示于类别:[Dept. of Food & Drug Industry and Inspective Technology] Periodical Articles

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML2555检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈