This paper presents an original approach to the removal of phenol in synthetic wastewater by catalytic wet peroxide oxidation with copper binding activated carbon (CuAC) catalysts. The characteristics and oxidation performance of CuAC in the wet hydrogen peroxide catalytic oxidation of phenol were studied in a batch reactor at 80 �C. Complete conversion of the oxidant, hydrogen peroxide, was observed with CuAC catalyst in 20 min oxidation, and a highly efficient phenol removal and chemical oxygen demand (COD) abatement were achieved in the first 30 min. The good oxidation performance of CuAC catalyst was contributed to the activity enhancement of copper oxide, which was binding in the carbon matrix. It can be concluded that the efficiency of oxidation dominated by the residual H2O2 in this study. An over 90% COD removal was achieved by using the multiple-step addition in this catalytic oxidation.