Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/22787
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18074/20272 (89%)
Visitors : 4313682      Online Users : 6041
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    CNU IR > Chna Nan Annual Bulletin > Vol.35 (2009) >  Item 310902800/22787
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/22787


    Title: 在次序統計量下以加權最小平方估算分配函數之參數
    An alternative method estimate the parameter of the distribution by order statistics
    Authors: 關繼敏
    陸海林
    Contributors: 資訊管理系
    Keywords: 白權最小平方法
    次序統計量
    遺漏值(設限值)
    邏輯斯分布
    Weighted least square
    Order Statistics
    Failure-Censored
    Logistic distribution
    Date: 2009
    Issue Date: 2010-09-10 09:09:05 (UTC+8)
    Abstract: 本文主要提出一個加權最小平方法(weighred least square eslimat ion : WLSE)去估算具二個參數分配函數之參數,且對指數分布、極值分布、對數常態分布、邏輯斯分布等分布,根據可被觀察資料的位置,給予適當的加權因子。利用次序統計量提出不同的加權權重因子。並以邏輯斯分布為例,模擬WLSE與OLSE、AMLE效能之比較。結果顯示,對不同二個參數之估算, WLSE都比OLSE精確。但對第1個參數之估算,WLSE都比AMLE差,但仍在5%以內;對第2個參數之估算, WLSE則與AMLE無明顯差異。
    In this article, we propose a weighted least square method (WLSE) to estimate the parameters of the two-parameter distributions, which are widely used in, for example, Exponential, Extreme-Value, Linear exponential,Lognonnal and Logistic distributions etc.. In our approach, suitable weighting factors are provided based on the locations ofthe sorted observable data. We also demonstrated the comparisons of efficiency among simulated WLSE,ordinary least square estimation (OLSE) and approximate maximum likelihood estimation (AMLE) using Logistic distributions. The results show that for the estimation ofthe two parameters, WLSE is much more precise than OLSE. However, for the estimation of first parameter, WLSE is worse than AMLE but still within 5%. For the estimation of the second parameter, there is no significant difference between WLSE and AMLE.
    Relation: 嘉南學報(科技類) 35:p.26-272
    Appears in Collections:[Chna Nan Annual Bulletin] Vol.35 (2009)
    [Dept. of Information Management] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    v35_263_272.pdf13927KbAdobe PDF570View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback