Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/22249
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 18085/20283 (89%)
造访人次 : 5382350      在线人数 : 1262
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/22249


    標題: Removal of Monodisperse Liquid Aerosols by Using the Polysulfone Membrane Filters
    作者: Hsiao-Lin Huang
    Da-Ming Wang
    Se-Tsung Kao
    Shinhao Yang
    Yi-Chin Huang
    貢獻者: 職業安全衛生系
    關鍵字: Aerosol penetration
    Polysulfone membrane filters
    Face velocity
    Relative humidity
    Quality factor
    日期: 2007-03
    上傳時間: 2010-01-15 11:25:04 (UTC+8)
    摘要: Polymer membrane filters are extensively used for sampling and collecting aerosols. This work explores the aerosol penetration of the polysulfone (PSF) membrane filters using monodisperse liquid aerosols. Three concentration-casting polysulfone solutions (15, 20 and 25%) were utilized to yield PSF membrane filters with variously sized pores. Additionally, the effects of various factors, including the species of the aerosol (dioctyl phthalate and potassium chloride), the size of the aerosol (0.03–0.5 μm), the face velocity (5, 10 and 20 cm/s) and the relative humidity (30, 50 and 70%), on the aerosol penetrations, were estimated.
    Experimental results indicate that the penetrations of DOP liquid aerosols through 15, 20 and 25% PSF membrane filters with “Boltzmann charge equilibrium” are 3.1–9.1, 1.5–3.7 and 0.6–1.4%, respectively. The most penetrating size of the PSF membrane filters was around 0.05 μm. Our results further demonstrate that penetration through PSF membrane filters fell as the concentration-casting solution increased, because the pore size of the PSF membrane filters declines as the concentration of the casting solution rises. Moreover, the penetration of solid aerosols through PSF membrane filters exceeds that of liquid aerosols. Penetration through the PSF membrane filters increases obviously with the flow rate when aerosol smaller than 0.21 μm. When aerosol larger than 0.3 μm, the variations of penetration through the PSF membrane filters become smaller at different flow rates. The relative humidity does not influence the performance of the PSF membrane filters. Results of this study demonstrate that the 25% PSF membrane filter has a larger qF than the 15 and 20% PSF membrane filters.
    關聯: Separation and Purification Technology 54(1): p.96-103
    显示于类别:[職業安全衛生系(含防災所)] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    0KbUnknown2035检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈