The asymmetric aluminum ion exchange polysulfone membranes have successfully been prepared for the dehydration of ethanol-water mixture. The relationship between the membrane morphology, separation performance, and the ion content of membranes were discussed in this study. The experimental results showed that the separation performance of those membranes was increased upon increasing the degree of aluminum ion exchange in polysulfone membranes. Both permeation rate and separation factors of those membranes increased with increasing the degree of ion exchange. The increase in separation performance of aluminum ion exchange membranes was mainly attributed to ion crosslinking in polymer network and the hydration effects of exchanged ion in membranes. On the other hand, the operating temperature in the PV process showed a significant influence on the dehydration of water molecules in the permeate. An increase in temperature increased the permeation flux of permeate but slightly decreased its selectivity. The aluminum asymmetric ions in membranes showed a strong influence on permselectivity of asymmetric ion exchange membranes.
關聯:
Journal of Applied Polymer Science 106(2): p.1412-1420