English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18034/20233 (89%)
造訪人次 : 23644989      線上人數 : 482
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/22203


    標題: Isoobtusilactone A induces cell cycle arrest and apoptosis through reactive oxygen species /apoptosis signal-regulating kinase 1 signaling pathway in human breast cancer cells.
    作者: Po-Lin Kuo1
    Chung-Yi Chen
    Ya-Ling Hsu2
    貢獻者: 生物科技系
    日期: 2007-08
    上傳時間: 2010-01-12 09:13:09 (UTC+8)
    出版者: Amer Assoc Cancer Research
    摘要: This study is the first to investigate the anticancer effect of isoobtusilactone A (IOA) in two human breast cancer cell lines, MCF-7 and MDA-MB-231. IOA exhibited effective cell growth inhibition by inducing cancer cells to undergo G2-M phase arrest and apoptosis. Further investigation revealed that IOA's inhibition of cell growth was also evident in a nude mice model. Cell cycle blockade was associated with increased levels of p21 and reduced amounts of cyclin B1, cyclin A, cdc2, and cdc25C. IOA also enhanced the levels of inactivated phosphorylated cdc2 and cdc25C. IOA triggered the mitochondrial apoptotic pathway, as indicated by a change in Bax/Bcl-2 ratios, resulting in mitochondrial membrane potential loss, cytochrome c release, and caspase-9 activation. We also found that the generation of reactive oxygen species (ROS) is a critical mediator in IOA-induced cell growth inhibition. Enhancement of ROS by IOA activated apoptosis signal-regulating kinase 1 (ASK1) resulted in the increased activation of c-Jun NH2-terminal kinase and p38. Antioxidants EUK8 and N-acetyl cystenine significantly decreased apoptosis by inhibiting the ASK1 dephosphorylation at Ser967 and subsequently increased the interaction of ASK1 with thioredoxin or 14-3-3 proteins. Moreover, blocking ASK1 by small interfering RNA inhibition completely suppressed IOA-induced apoptosis. Taken together, these results imply a critical role for ROS and ASK1 in IOA's anticancer activity.
    關聯: Cancer research 68(15): p.7406-7420
    顯示於類別:[生物科技系(所)] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML1688檢視/開啟


    在CNU IR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋