網路之最佳可靠度係指在同樣的G( p,q)網路中,哪一種架構的網路最能發揮傳輸的功能;此處G代表一的網路的結構圖形,p為G之節點數,q為G之線路數;亦即再經費一定的原則下,如何架設網路才能使建構出來的傳輸系統保持在最佳狀態---中斷率最低。
目前已知具有最佳可靠度之網路為布林n-立方網路。此種網路的結構具有再造性;即二個完全一樣的布林n-立方網路可結合成一個布林(n+1)-立方網路。此種結構的特點正式利用乘積把二個網路串連成一個新的網路。本研究主要的目的是探討:利用乘積把二個不同架構的網路(注意:布林(n+1)-立方網路是由二結構完全一樣的布林n-立方網路乘積而得)串連成一個新的網路時,是否具有最佳可靠度?
步驟如下:
1.找出哪種乘積的架構必具最佳可靠度。
2.具最佳可靠度的網路有哪些共同的特點?
3.可否利用這些共同的特點,提出另一種產生最佳可靠度網路之方法? The project is to survey the connectivity properties on Cartesian product of two graphs, and try to offer a way of finding the all disjoint paths between any two points of it.
The study is divided into two parts: one is based on the case of connected of the two graphs. We try to find whether the Cartesian product of this two graphs is maximum connectivity and/or super connectivity or not, and try to offer a way of finding the all disjoint paths between any two points of it.
As a result, especially, the way of finding the all disjoint paths between any two points, not only makes the theory about Cartesian product more perfectly but also offers a design of network such that the network is high reliability and economy.