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ABSTRACT

This paper provides some suitable pivotal quantities for
constructing the prediction intervals of the jth future order
observation from the two-parameter weibull distribution based
on censored samples. The method employed is more general in
the sense that it can be applied to any data scheme. The
precisions of the generated intervals are compared via
simulations. Finally two illustrative examples are included.
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1. INTRODUCTION

In most researching of reliability, the Weibull distribution is
widely used as a model of lifetime data (Bain and Engelhardt
[2], Agresti [1). Let us consider the two-parameter Weibull
distribution with probability density function (pdf)

w0 =2y exp =Ly, 120, (1)
a «a a
and cumulative distribution function(cdf)
W) =1-exp{~(2)"), @
o

where 3> 0 and o> 0 are the shape and scale parameters,
respectively. Logistic distribution is similar to Weibull
distribution. For convenience , we adopt Weibull distribution to
explain the process. It is worth noting that if 7 is a random
variable having the Weibull cdf given by formula (2), then the
random variable X = /nT is distributed as a smallest Type I
extreme value variate with pdf

ﬂ
f@=—enp( Hyexpe =) ~w<u<moz0 Q)
o o
where U= In[3 and o= 1/[3. Its cdf has the form
x—pt
F(x)=1-exp(—e ° ). “)

In life testing studies, several lifetimes of units put on test
may not be observed due to time limitations or money and
material resources restrictions on data collection. Consider an
experiment in which 7 identical components are placed on test
simultaneously. Suppose the experiment was terminated when
the (n-s)th component failed, thus censoring the last s
components. Such a sample is called Type II right censored
sample. If some initial 7 observations are also censored, it is
called Type II doubly censored.

The studies of estimating the prediction intervals of the future
data are quite important and valuable in lifetime analysis.
There have been several studies in the literature dealing with
such problems. For the exponential distribution, Lawless[9]
and Likes[12] estimated the prediction intervals based on the
order statistics, X(/) (r<j<n), of a sample while the first r

data of the sample were observed. Mann and Grubbs[15]
proposed an alternative method to construct approximate
prediction intervals. Kaminsky and Nelson[8] constructed
prediction intervals by using the best linear unbiased estimates
(BLUE) of the parameters as a pivotal statistic. For the
Weibull distribution, Mann and Saunders[16] used three
specially selected order statistics to predict the minimum of a
single future sample. Engelhardt and Bain[5] constructed the
prediction limits for the jth smallest of some set of future
observations. Fertig et al.[6] provided Monte Carlo estimates
of percentiles of the distribution of a statistics .S for constructing
prediction intervals of a future observation. Lawless[10] used
a conditional method to obtain a prediction interval for the first
order statistic of a set of future observations, based on previous
data; Hsieh[7] used the same technique to construct prediction
intervals for future observations. Mann and Fertig[14]
constructed the tables for obtaining the best linear invariant
estimates (BLIE) of parameters. Balakrishnan and Cohen[3]
proposed an approximate maximum likelihood estimates
(AMLE) of parameters. All these researches are under the
scheme that the available data is either right censored or doubly
censored.

It is well known that the Type II censored data, the right, left
and doubly censored data are all special cases of multiple
censored data. In this paper, we consider the general case of



the multiple Type II censored data scheme. Suppose n
components are placed on test in life testing. The lifetime of
the first 7, the middle /, and the last s components are assumed

unobserved or missing. That is, we assume X
.

<...< n < <...< T
X(r+2) X(I‘+k) a d X(r+k+[+l) X(nfs) are

observable and no others. In practice, multiple Type II
censored problems may arise when some components failed
between two points of observation with exact times of these
failure unobservable components (Balasubramanian and
Balakrishnan [4]).

In next section, following the ideas of Wu et al. [18], we
present our method of constructing the prediction intervals of
the future unknown observations for Type II censored data.
We describe the procedure for calculating the percentiles of the
distributions of the pivotal quantities, and the simulation results
are compared with the existing method in section 3 and 4,
respectively. In section 5, we illustrate our method with two
examples. A brief discussion is presented in section 6.

X(r+k+1+2)

2. AGENERAL FORM OF PIVOTAL
QUANTITY

The prediction intervals of our method for X(j) are based on a

subset X ¥ of X ¢ ,where

1<n <n<..<n <d<j<n-. Let , _X-p, then y has
! c

extreme value distribution with g/~0 ando=1. And

Xu—# is the ith order statistic of Y,. We define some

il O N
Y(i] -
o

pivotal quantities (proof shown in Appendix I) of the following
general forms,

ﬁhzm, h=1..4, n-s<j<n,
w,
where
- & gEX,,))
W, = %( = X)) 5)
- n -1 E( . )
W, = M(Xm:)_)((m)
=l z, 8(E(Y,))
< g(E(¥,))
= (X, = X,)
z g(E(Y, r)))
Z 8(E(Y ;) X(X<»z,->+X<n,m_2X<nl>]
Ay g(E(Y,) 2
z g(E(Y )
+27‘Xﬂ(._ n,)’
Ay gEx,y "
(6)
2(E(,,))

~ c T2 8(E(Yy,,)) 7
MZH(X(%)_X(M) > @

i=2

S(E(Y,,))
S g(E(Y)

n—1
VV4 H](X(”z) (”|))

2(E(Y,,))

< 1 g(E(Y )
x H(X(n,) = Xy)
i=2

g(E(Y,))
—1 ny -1 _ n
x h H (X(”‘) +X nisi) ZX(WI) )Z’:'g(E(Y“)))
2
i=1 i=n;+1
g(E(Y(,)))
n
Z:’:|8(E(Y(,)))
H (X(’H ) X(’h))

®)

I/I7l and I/I72 come from the ideas of arithmetic means, and
1/173 and 7 , follow the concepts of geometric means. The

equations (5) to (8) are general forms. Wu et al. [18] consider
the case where every datum of different position has the same
weight. In the case of extreme value distribution, it seems
reasonable to assume that the weight of each datum point should
be different for different position. From the properties of the
extreme value distribution, we suggest that the weighted factors

gEY, NIY" g(EX,,) in W,

where E(Y,,) is the expected values of Yo, - The

are equal to

E(Y,, ) is defined as le Y, q(¥, )dy,,  » where

q(¥, ) is the pdf of the n;th order statistic of Yoo Since

the parameters 1 and o in (5) will be cancelled (see the proof in
Appendix 1), without loss of generosity, we simply treat them as
standard extreme value distribution. Therefore, g Y, ))

will be constants and set g(z) =e‘e * , z = E(Y,, )

It also showed that the weighted factors do not depend on the
parameters A/ and O

According to the general data scheme mentioned in section 1,
the pivotal quantities of (5) to (8) are transformed to the
following forms

U = w s h=1..4,

where

7, = § EET)

(X~ Xo)
=S 0 ~ A
r+k+l+m
g(E(Y(i)))
+ S (X =X
i=r+k+I+1 c

)



A E
Wz Z ( ( l)))(X(r+2)_‘X(r+l))

S}’l
r+k
g(EX,))
+ Z Si(X(i) _X(r+1))
i=r+2 n
+ 'gl g(E( (1)))(X(r+k) +X(r+k+1+1) _2X(r+l)]
i=r+k+1 S,, k 2
o g(E( (l)))
Z S (Xm - <r+1>)
i=r+k+1+1 n
5 g(E( (1)))
) Z ] S (X(nfs) _X(rﬂ))’
i=n—-s+ n
(10)
ik 8EM )
N 3
W3 = H(X(i) _X(H-l))
i=r+2
r+k+l+m SET ;)
S
X H (X(i)_X(H-l)) >
i=r+k+1+1
(11)
. 2(E(Y)
I/V4 = (X(r+2) - X(m))
i=1
ek SEY))
s,
X H(X(i) _X(r+l)) !
i=r+2
g(E(Y;)))
% rﬁl ( (r+k) +X(r+k2+/+1) _ZX(r+1)) s,,()
i=r+k+1
s g(E(Y))
Sn
H(Xm - X<r+1>)
i=r+k+I1+1
n g(E(Y(,)))
S,
x H(X(n—s) _X(r+])) ’
i=n—s+1
(12)
where
r+k r+k+l+m
= Zg(E( z)))"" Zg(E( (z)
t=r+2 t=r+k+1+1
S, Zg(E( 0))-
For comparison, the other pivotal quantity is (}“. Let
A~ XX
U =20 20 - j<n,  where
v,
W =6. (13)

The 6 is the AMLE of o, which can be obtained from
Balakrishnan and Cohen[3].

distribution are listed in Table 9 (see Appendix II).
From equations (9) to (12), the distributions of {j , depend

The percentiles data of (J

onlyonn, 1, k, [, m, s, j, but not on |1 and O. Then, we have

X =Xoo _ - ;
l1-a=P{0<—+r—"—=<u,(1-a;n,r,k,l,m,s, j)}
h

= PX ) <X <Xy + 0, (1= asm,rk,Lm,s, )<, .

Table 1. The properties of parameters z and G of 60,000

random samples for each combination case.
n ﬂmean * lexd 5mean * ON-.\‘d
13 -0.009147+0.353776  0.921192 £ 0.344354
25 -0.001123£0.228614  1.000021 %+ 0.201247
30 0.000347£0.208632  0.999757 +0.183330

35 -0.001845+0.191873  1.000458 +0.169762
40  -0.001771£0.172441  0.999497 £+ 0.146308

Therefore, (X,

(n—s)>

X("*S)

+i,(1=azn,rk,Lm,s, j)xW,) >h
1,...,4 are one-sided 100(1-a)% prediction intervals of X ()

based on m+k observations.

3. CALCULATION AND ALGORITHM

The exact distributions of the pivotal quantities {7 .\ (h=1,..., 4)
can not be derived algebraically, but we can approximate the
distributions of {J , (h=1,..., 4) by using large quantities of the
Monte Carlo sampling with some programming algorithms to
generate the percentiles of {7 , - All the simulations were run

with the aid Microsoft Quick Basic 4.5 program and Foxbase
database software package. The procedures for generating the
percentiles of {j , are as follows:
a. Give and set |JU=0, O=1.
parameters I and & of the random samples generated

(For providing the properties of

by computer, 60,000 Monte Carlo runs are done for each
combination of n, r, k, I, m, s, j (some selected cases).
The results are presented in Table I. Using Table 5.3 in
Mann et al.[17] for case of n=13 and Table 1 in Mann et
al.[14] for remaining cases to obtain the necessary weights,
we can calculate their BLIE's of |4 and O respectively.

The Iumm and &  of those random samples are very

mean

close to 0 and 1, respectively.)

b. Calculate the following statistics: [/
in (11), (j4 in (12).

in9), U, in(l0),

U,
c. In the Step a and Step b, 600,000 replicates are used to

compute the percentiles of [J , (h=1,..., 4) for each

combination of n, r, k, [, m, s, j.

d. Sort 600,000 results of each combination of n, r, k, I, m, s, j
in ascending order.

e. Retrieve the value of {J i (h=1,..., 4) under different

significance levels of 1.

From the above procedures, we obtain the values of
(jh (h=1,..., 4) according to the exact position of {j  (h=1,...,
4) in Step d.

In our simulation, 600,000 replicates are done for each
combination of n, r, k, [, m, s, j. To save space, we only list
part of the percentiles of (jh (h=1,..., 4) in Table 5 to 8 (see

Appendix II).



4. COMPARISON

In this section, we compare the performance of our method with
U , - We calculate their average lengths of 95% prediction
intervals, and coverage probabilities for some selected
combinations of n, r, k, [, m, s, j. Referring to the data scheme
mentioned in section 1, the simulation is computed

by the following procedures:

a. Give and set =0, o=1.

b. Generate n (n=10,13,20,40) random samples from the
standard extreme value distribution.

c. Calculate the values of Wh (h=1,..., 4,a), and then make a
multiply of 3, by U, (h=1,..., 4, a) (from Table 5 to 9)

for each combination of n, r, k, [, m, s, J.

d. Repeat steps b to c, execute 10,000 runs and record all
upper bounds of the confidence intervals of x

(n—-s+1)

and x

(n—s+2) "

e. From the results in steps ¢ and d, calculate the average
length of the 10,000 confidence intervals, and coverage
probabilities for all methods

The results of simulation are listed in Table 2. It is clear that
the 95% estimated expected lengths of {J , or U , are shorter.
The difference among U, U,, and U is not significant

(about 0% to 3%). It is also shown that the confidence intervals
of U i (h=1,..., 4, a) have almost 95% coverage probabilities.

It is interesting to note that if the sample size # is larger, then the
difference of average lengths among {j .\ (h=1,..., 4, a) will be

smaller. And it also showed that simulation has the property of
convergence.

Table 2. The average length of 95  prediction intervals ,
and coverage probabilities for X(j) by difference statistics:

=0, o=1.
n U, U, U, U, U,
10 3.034146  2.834668  3.553925  2.868328  2.729171
(9523 ) (9511 ) (9522 ) (9518 ) (9501 )
10 126180  1.208341  1.462240 1341985  1.174512
(95.04 ) (9497 ) (9534 ) (9518 ) (9492 )
10 1156878 1.123969 1335957  1.196265  1.094455
(9440 ) (9452 ) (9458 ) (9446 ) (9440 )
13 0.868976  0.846851 0917785  0.885132  0.762706
(95.04 ) (9501 ) (9493 ) (9499 ) (9515 )
13 0.882302  0.852831  0.999311  0.945090  0.831682
(94.69 ) (9486 ) (9437 ) (9453 ) (9485 )
13 0.853402  0.808929  0.982991  0.869487  0..788812
(9449 ) (9456 ) (9450 ) (9449 )  (94.58 )
20 0.573943  0.545609  0.601589  0.555719  0.500980
(9470 ) (9471 ) (9464 ) (9466 ) (9487 )
20 0.570727  0.544830  0.638461  0.556134  0.590064
(9514 ) (9508 ) (9500 ) (9505 ) (9522 )
40 0.248098  0.244359 0251093  0.247359  0.224264
(9479 ) (9482 ) (9476 ) (9478 )  (94.68 )
40 0.236455  0.233026 0244821 0250343 0.230777
(9499 ) (9499 ) (9486 ) (9479 )  (95.04 )
40 0.336696  0.335886  0.349590  0.356296  0.330274
(94.96 ) (9494 ) (9495 ) (9490 )  (94.95 )

5. EXAMPLES
5.1 Example 1

Consider the following 13 components were placed on test,
and the test was terminated at the time of the 10th failure
(Mann and Fertig[13]). The first 10 observations are given
below:

0.22,0.50, 0.88, 1.00, 1.32, 1.33, 1.54, 1.76, 2.50, 3.00.
It is assumed that the 10 observed data are from the same
Weibull distribution. We transform the data to extreme value
form: the logs of the 10 observations are

-1.541, -0.693, -0.128, 0.000, 0.278, 0.285, 0.432, 0.565,

0.916, 1.099.

Table 3. The one-sided 90  prediction intervals, the
percentiles of { (k=1,...,4, a), and CMd using MLE and

BLIE (Hsich[7]).

Uk(ll) 0}((12) X(n) ‘X(IZ)
01 0.243 0.456 (1.099,1.579)  (1.099, 1. 998)
Uz 0.224 0.418 (1.099,1.573)  (1.099, 1.987)
f]} 0.268 0.507 (1.099,1.612)  (1.099, 2.068)
”4 0.244 0.458 (1.099,1.600)  (1.099, 2.038)
U, 0.616 1.134 (1.099,1.535)  (1.099, 1.902)
(C, M) - - (1.099,5.263)  (1.099, 8.002)
(C,BLIE) 3 . (1.099,5.276)  (1.099, 8.022)

Note: CMd=Conditional Method, M=MLE

Table 4. The one-sided 95  prediction intervals and the
percentiles of Uk (k=1,...,4, a)

U,y g,12) Xy Xz
0, 0.148 0.240 (-0.45,0.122) __ (-0.45, 0.490)
0, 0.152 0.245 (-0.45,0.099)  (-0.45,0.444)
0, 0.162 0.264 (-0.45,0.227)  (-0.45, 0.690)
o, 0.165 0.268 (-0.45,0.126)  (-0.45,0.496)
0 0.542 0.880 (-0.45,0.135)  (-0.45,0.514)

]

In this case, we have n=13,r=0,k=10,/=0,m=0, and s = 3.
Applying our method to estimate the one-sided 90% prediction

intervals of X, 11)and Xy The results are presented in Table

III. It is clear that the shorter prediction intervals are obtained by
the pivotal quantities {J, and(J .

5.2 Example 2

The following are 10 observations data from Lawless[11].

-3.57, -2.55, -2.02, -1.66, -1.36, -1.15, -0.95, -0.77, -0.61, -0.45.
It assumed that above data were obtained from a sample of 20,
which are distributed according to extreme value distribution,
and the last 50% data were censored. And only from the 3rd to
the 6th failure times and from the 9th to the 10th failure times
are available. In other words, this is the case of n =20, r=2, k
=4,/=2,m=2,and s = 10, The one-sided 95% prediction
intervals of X and X are listed in Table 4. It is obvious

that the pivotal quantity [/ , has the shortest prediction

intervals.



6. DISCUSSION 7.2 Appendix 11

From Table 2, the average length of prediction intervals of U/ , Table 5. The percentiles data of {J, distribution for X ()"
U,,andy , are shorter thangy and {j,. Since {,and ,are n r K | m s j 0.90 0.95
A 4 A 0 0 30 0 7 4 1.355785 2.201880
longer than Uu,, U, and U, are preferred to both of them. 10 0 3 0o 0 7 5 27333157 3681949
The average lengths of prediction intervals of {j and {7 are 10 0 8 0 0 2 9 0.368497 0.5.3914
A X 3 N 0 0 8§ 0 0 2 10 0.751464 0.972094
longer than U . and U , - 1t may be the reason that the power 10 2 5 0 0 3 8 0.996771 1.426663
. . . . 10 2 5 0 0 3 9 1.885445 2.568596
operations in geome.trllc means will cause the results extended 0 3 4 0 o 3 8 0.999649 1.437188
unexpectedly. Intuitively, our method produces good result 10 3 4 0 0 3 9 1.879692 2.569213
because we have given different weight to each datum point. o1 312 3 8 1.618781 0.864230
Following the algorithm of section 3, it is straightforward to 10 ! 3o b2 3 J 1134031 1.533077
ollowing the algorit > traightl 0 1 2 2 1 4 7 0.722657 1.030894
construct prediction intervals for the future failure time by the 0 1 2 2 1 4 8 1.303315 1769215
pivotal quantities {7 and {7, . Note also that {7 and B30 10 0 0 3 I 0.243662 0.330549
1 2 1 30 10 0 o0 3 12 0.456420 0.589753
U , can be applied to any kind of data scheme. 130 8 0 0 5 9 0.264716 0.369639
. . L L 130 8 0 0 5 10 0.471422 0.624253
Comparing with the existing methods, it is true that 13 3 6 0 0 4 10 0.785583 1.106489
calculation procedures of {7 are simpler than {7 and [, . 133 6 0 0 4 1 1.443556 1.935043
“ ! 2 13 4 7 0 0 2 12 0.912021 1.239771
But since the computations of U/ and U, can be easily done 13 4 70 0 2 13 1.908133 2.469798
) . . . 13 2 5 1 1 4 10 0.606973 0.843070
by computers, it seems to be not an important consideration. 13 2 5 1 1 4 11 1.111241 1.469986
Furthermore, following the some algorithm, it is not difficult for 13 3 6 1 1 2 12 0.773738 1.050499
generating and simulating larger sample size n. Thus it makes 1379 Ol 1 2 13 1.621465 2.075764
hi thod to be potentiall ful than the existi 20 0 10 0 0 10 1 0.164343 0.224058
this method to be potentially more use an the existing ones. % 0 10 0 o0 10 12 0283892 0371838
For further study, this simulation scheme can be easily applied 20 0 16 0 0 4 17 0.132946 0.177885
to other family of location and scale distributions. 200 16 0 0 4 18 0.245659 0.309447
20 2 4 2 2 10 11 0.378516 0.520569
20 2 4 2 2 10 12 0.651078 0.854504
40 0 30 0 0 10 31 0.050056 0.066743
4 0 30 0 0 10 32 0.087866 0.109813
7. APPENPICES 40 10 20 0 0 10 31 0.203558 0.269217
7.1 Append|x | 4 10 20 0 0 10 32 0.345067 0.442121
. ~ . . . 40 8 15 3 10 4 37 0.207640 0.270819
Theorem: If p/ in (5) is an estimator of |4 and O based on 40 3 5 3 10 4 38 0.382493 0469227
multiple type II censored sample Xy <X, S <X, from
o " n
two-parameter Weibull distribution, then ~ X, —-X, is a . .
U B Table 6. The percentiles data of U, distribution for X(j)l
1
pivotal (parameter-free) quantity n r k | m s j 0.90 0.95
10 0 3 0 0 7 4 1.125945 1.807184
Proof: 0 0 30 0 7 5 1.926988 3.009241
10 0 8 0 0 2 9 0.341619 0.463249
Define - X, —u, then Y does not depend on i and .  And 0 0 s 0 0 5 10 0.690662 0889023
o 10 2 5 0 0 3 8 0.854753 1.209239
Xy —# is the ith order statistics of Y. 0 2 s 0 0 3 9 1.607269 2.163889
Yy = i 0 3 4 0 0 3 8 0.857231 1.219519
o 10 3 4 0 o0 3 9 1.602540 2.171974
C
_ g(E, ) 10 1 31 2 3 8 0.535858 0.744663
Let Z =Y, _Y(nu)’ Z,= ZCA(YM =Y, o 1 3 1 2 3 9 0.994515 1.312484
i=2 z g(EY,,) 0w 12 2 1 4 7 0.626326 0.886672
=2 (n;)
10 1 2 2 1 4 8 1.119622 1.518678
where 30 10 0 o0 3 1 0.224299 0.302451
c E(Y 13 0 10 0 0 3 12 0.418464 0.537054
ZM are constant. 130 8 0 0 5 9 0.228817 0.317286
.
= E(Y 13 0 8 0 0 5 10 0.404464 0.530687
= zrzzg( ( W)) 13 3 6 0 0 4 10 0.678069 0.950597
13 3 6 0 0 4 11 1.239673 1.644747
. . 13 4 7 0 0 2 12 0.925312 1.257150
Define Z,=7,/Z,. Both Zand Z,are pivotal; therefore, 3 4 7 0 o 5 13 1925821 2487037
is al i 1. Tt foll h 13 2 5 1 1 4 10 0.476881 0.655567
Zy1s also pivotal. It follows that 13 2 5 1 1 4 11 0.864392 1.130554
X . - X - 13 3 6 1 1 2 12 0.683757 0.921912
WZH_ Aey T H 3 3 6 1 1 2 13 1.423511 1.812982
o o o 20 0 10 0 0 10 11 0.138502 0.187599
1= E(Y X - X - 20 0 10 0 0 10 12 0.238964 0.307889
Z 8(EQ,,)) (—) H_ 2o “) 20 0 16 0 0 4 17 0.125104 0.166941
c
& E(Y o o 20 0 16 0 0 4 18 0.230551 0.289223
= Zzzzg( ( ("0)) 20 2 4 2 2 10 11 0.289980 0.396636
Y _Y 7 20 2 4 2 2 10 12 0.496145 0.645765
= () ") =Zl_z. 40 0 3 0 0 10 31 0.046921 0.062344
& g(EY,)) Z, 3 4 0 3 0 0 10 32 0.082149 0.102351
Zc—‘(Y(,, y~ Yo, ) 40 10 20 0 0 10 31 0.187509 0.248863
=Y. g(EY, ) 4 10 20 0 0 10 3 0326648 0.407463
=2 (n,)
o = ) - - 4 8 15 3 10 4 37 0.207977 0.272013
Similarly, it is easy to show that the estimators U ,, U 55 and 40 3 15 3 10 4 38 0.384794 0.467108

U , are also pivotal quantities.



Table 7. The percentiles data of {J, distribution for X ) Table 9. The percentiles data of {J distribution for X( 7)

n r k I m s j 0.90 0.95 n r k I m s j 0.90 0.95
10 0 3 0 0 7 4 1.608883 2.721678 10 0 3 0 0 7 4 2.429833 3.884042
10 0 30 0 7 5 2.821951 4.645655 10 0 30 0 7 5 4138215 6.444420
10 0 8 0 0 2 9 0.415438 0.576626 10 0 8 0 0 2 9 0.878576 1.169411
10 0 8 0 0 2 10 0.856595 1.138579 10 0 8 0 0 2 10 1.732412 2.181317
10 2 5 0 0 3 8 1.287732 1.902335 10 2 5 0 0 3 8 1.008783 1.420359
0 2 5 0 0 3 9 2.484045 3.534942 0 2 5 0 0 3 9 1.885141 2.518690
10 3 4 0 0 3 8 1.292677 1.923213 0 3 4 0 0 3 8 1.013620 1.423626
0 3 4 0 0 3 9 2.481441 3.525552 0 3 4 0 0 3 9 1.875346 2.521363
10 1 3001 2 3 8 0.788329 1.142375 10 1 3001 2 3 8 0.857669 1.191790
10 1 3001 2 3 9 1.503843 2.067356 10 1 3001 2 3 9 1591620 2.115796
10 1 2 2 1 4 7 1.036246 1.569153 10 1 2 2 1 4 7 1.169301 1.808686
10 1 2 2 1 4 8 1.934792 2.786440 10 1 2 2 1 4 8 2.153508 3.249308
13 0 10 0 0 3 11 0.268639 0.369248 13 0 10 0 0 3 11 0.616219 0.818953
13 0 10 0 0 3 12 0.507211 0.665167 13 0 10 0 0 3 12 1.134672 1.423598
13 0 8 0 0 5 9 0.294301 0.415125 13 0 8 0 0 5 9 0.617341 0.839394
13 0 8 0 0 5 10 0.529261 0.710224 13 0 8 0 0 5 10 1.072864 1.385328
13 3 6 0 0 4 10 1.010156 1.470474 13 3 6 0 0 4 10 0.704400 0.981970
13 3 6 0 0 4 11 1.893738 2.624943 13 3 6 0 0 4 11 1.278436 1.695298
13 4 7 0 0 2 12 1.219110 1.723033 13 4 7 0 0 2 12 0.806103 1.085826
13 4 7 0 0 2 13 2.596685 3.509463 13 4 7 0 0 2 13 1.665137 2.113019
13 2 5001 1 4 10 0.783438 1.131463 13 2 5001 1 4 10 0.898447 0.815059
13 2 501 1 4 11 1.455241 2.007740 13 2 501 1 4 11 1.075171 1399081
13 3 6 1 1 2 12 1.024048 1.446484 13 3 6 1 1 2 12 0.697125 0.929402
13 3 6 1 1 2 13 2.188790 2.919691 13 3 6 1 1 2 13 1.430224 1.800205
20 0 10 0 0 10 11 0.178347 0.245756 20 0 10 0 0 10 11 0.403657 0.542627
20 0 0 0 0 10 12 0.309257 0.410631 20 0 10 0 0 10 12 0.686638 0.871494
20 0 16 0 0 4 17 0.142240 0.191015 20 0 16 0 0 4 17 0.391437 0.514785
20 0 16 0 0 4 18 0.263603 0.334755 20 0 16 0 0 4 18 0.710061 0.870636
20 2 4 2 2 10 1 0.485984 0.685521 20 2 4 2 2 10 11 0.457084 0.643474
20 2 4 2 2 10 12 0.851258 1.153520 20 2 4 2 2 10 12 0.792695 1.060140
40 0 30 0 0 10 31 0.051966 0.069362 40 0 30 0 0 10 31 0.175387 0.229385
40 0 30 0 o0 10 32 0.091289 0.114727 40 0 30 0 0 10 32 0.301198 0.370072
40 10 20 0 0 10 31 0.251929 0.337695 4 10 20 0 0 10 31 0.182691 0.241560
40 10 20 0 0 10 32 0.442873 0.559259 40 10 20 0 0 10 32 0.317068 0.393065
40 3 15 3 10 4 37 0.257641 0.340726 40 8 15 3 10 4 37 0.242214 0.315173
40 8 15 3 10 4 38 0.479742 0.589852 40 8 15 3 10 4 38 0.446239 0.541538
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