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ABSTRACT 
This paper provides some suitable pivotal quantities for 
constructing the prediction intervals of the jth future order 
observation from the two-parameter weibull distribution based 
on censored samples. The method employed is more general in 
the sense that it can be applied to any data scheme. The 
precisions of the generated intervals are compared via 
simulations.  Finally two illustrative examples are included.  

Categories 
G.3 [PROBABILITY AND STATISTICS]: Probabilistic 
algorithms---Reliability and life testing, Random number 
generation 
 
General Terms 
Reliability 
 
Keywords 
Prediction Intervals, Monte Carlo Simulation, Order Statistics 
 
1. INTRODUCTION 
In most researching of reliability, the Weibull distribution is 
widely used as a model of lifetime data (Bain and Engelhardt 
[2], Agresti [1). Let us consider the two-parameter Weibull 
distribution with probability density function (pdf) 

},)(exp{)()( 1 ββ

ααα
β tttw −= −  ,0>t              (1) 

and cumulative distribution function(cdf) 

},)(exp{1)( β

α
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where β> 0 and α> 0 are the shape and scale parameters, 
respectively. Logistic distribution is similar to Weibull 
distribution. For convenience , we adopt Weibull distribution to 
explain the process.  It is worth noting that if T is a random 
variable having the Weibull cdf given by formula (2), then the 
random variable X = lnT is distributed as a smallest Type I 
extreme value variate with pdf 
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where μ= lnβ and σ= 1/β.  Its cdf has the form 
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In life testing studies, several lifetimes of units put on test 

may not be observed due to time limitations or money and 
material resources restrictions on data collection.  Consider an 
experiment in which n identical components are placed on test 
simultaneously.  Suppose the experiment was terminated when 
the (n-s)th component failed, thus censoring the last s 
components.  Such a sample is called Type II right censored 
sample.  If some initial r observations are also censored, it is 
called Type II doubly censored. 
  The studies of estimating the prediction intervals of the future 
data are quite important and valuable in lifetime analysis.  
There have been several studies in the literature dealing with 
such problems.  For the exponential distribution, Lawless[9] 
and Likes[12] estimated the prediction intervals based on the 
order statistics, ( )jX )( njr ≤< , of a sample while the first r 

data of the sample were observed.  Mann and Grubbs[15] 
proposed an alternative method to construct approximate 
prediction intervals.  Kaminsky and Nelson[8] constructed 
prediction intervals by using the best linear unbiased estimates 
(BLUE) of the parameters as a pivotal statistic.  For the 
Weibull distribution, Mann and Saunders[16] used three 
specially selected order statistics to predict the minimum of a 
single future sample.  Engelhardt and Bain[5] constructed the 
prediction limits for the jth smallest of some set of future 
observations.  Fertig et al.[6] provided Monte Carlo estimates 
of percentiles of the distribution of a statistics S for constructing 
prediction intervals of a future observation.  Lawless[10] used 
a conditional method to obtain a prediction interval for the first 
order statistic of a set of future observations, based on previous 
data; Hsieh[7] used the same technique to construct prediction 
intervals for future observations. Mann and Fertig[14] 
constructed the tables for obtaining the best linear invariant 
estimates (BLIE) of parameters.  Balakrishnan and Cohen[3] 
proposed an approximate maximum likelihood   estimates 
(AMLE) of parameters.  All these researches are under the 
scheme that the available data is either right censored or doubly 
censored.  
  It is well known that the Type II censored data, the right, left 
and doubly censored data are all special cases of multiple 
censored data.  In this paper, we consider the general case of 



 
 
 
 
 
 
 
 
 
 
 
 

     

the multiple Type II censored data scheme.  Suppose n 
components are placed on test in life testing.  The lifetime of 
the first r, the middle l, and the last s components are assumed 
unobserved or missing. That is, we assume 

)1( +rX  < 

)2( +rX <…<
)( krX +

and 
)1( +++ lkrX <

)2( +++ lkrX <…<
)( snX −

 are 

observable and no others.  In practice, multiple Type II 
censored problems may arise when some components failed 
between two points of observation with exact times of these 
failure unobservable components (Balasubramanian and 
Balakrishnan [4]). 
  In next section, following the ideas of Wu et al. [18], we 
present our method of constructing the prediction intervals of 
the future unknown observations for Type II censored data.  
We describe the procedure for calculating the percentiles of the 
distributions of the pivotal quantities, and the simulation results 
are compared with the existing method in section 3 and 4, 
respectively.  In section 5, we illustrate our method with two 
examples.  A brief discussion is presented in section 6. 
 
 
2. A GENERAL FORM OF PIVOTAL 

QUANTITY 
The prediction intervals of our method for ( )jX  are based on a 
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pivotal quantities (proof shown in Appendix I) of the following 
general forms,  
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1
~W and 2

~W come from the ideas of arithmetic means, and 

3
~W and 4

~W  follow the concepts of geometric means.  The 
equations (5) to (8) are general forms.  Wu et al. [18] consider 
the case where every datum of different position has the same 
weight.  In the case of extreme value distribution, it seems 
reasonable to assume that the weight of each datum point should 
be different for different position.  From the properties of the 
extreme value distribution, we suggest that the weighted factors 
are equal to  ∑ =

n

t nn ti
YEgYEg

1 )()( ))((/))((  in 1
~W , 

where )( )( inYE  is the expected values of 
)( inY .  The 

)( )( inYE is defined as ∫
∞

∞− )()()( )(
iii nnn dYYqY , where 

)( )( inYq  is the pdf of the nith order statistic of 
)( inY .  Since 

the parameters µ and σ in (5) will be cancelled (see the proof in 
Appendix I), without loss of generosity, we simply treat them as 
standard extreme value distribution.  Therefore, )( )( inYE  

will be constants and set zez eezg −=)( , )( )( inYEz = .    

It also showed that the weighted factors do not depend on the 
parameters μ and σ. 

According to the general data scheme mentioned in section 1, 
the pivotal quantities of (5) to (8) are transformed to the 
following forms 
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For comparison, the other pivotal quantity is 

aÛ .  Let 
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The σ̂ is the AMLE of σ, which can be obtained from 
Balakrishnan and Cohen[3].  The percentiles data of 

aÛ  
distribution are listed in Table 9 (see Appendix II). 

From equations (9) to (12), the distributions of 
hÛ depend 

only on n, r, k, l, m, s, j, but not on μ and σ. Then, we have 
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Table 1.  The properties of parametersµ~ andσ~ of 60,000 
random samples for each combination case. 

n 
sdmean µµ ~~ ±  sdmean σσ ~~ ±  

13 -0.009147± 0.353776 0.921192± 0.344354
25 -0.001123± 0.228614 1.000021± 0.201247
30 0.000347± 0.208632 0.999757± 0.183330
35 -0.001845± 0.191873 1.000458± 0.169762
40 -0.001771± 0.172441 0.999497± 0.146308

 
 
Therefore, )ˆ),,,,,,;1(ˆ,( )()( hhsnsn WjsmlkrnuXX ×−+−− α  , h = 

1,…,4 are one-sided 100(1-α)％ prediction intervals of  ( )jX  

based on m+k observations. 
 
 
3. CALCULATION AND ALGORITHM 
The exact distributions of the pivotal quantities

hÛ (h=1,…, 4) 
can not be derived algebraically, but we can approximate the 
distributions of 

hÛ (h=1,…, 4) by using large quantities of the 
Monte Carlo sampling with some programming algorithms to 
generate the percentiles of 

hÛ .  All the simulations were run 
with the aid Microsoft Quick Basic 4.5 program and Foxbase 
database software package.  The procedures for generating the 
percentiles of 

hÛ are as follows: 
a. Give and set μ=0, σ=1.  (For providing the properties of 

parameters µ~  and σ~  of the random samples generated 
by computer, 60,000 Monte Carlo runs are done for each 
combination of n, r, k, l, m, s, j (some selected cases).  
The results are presented in Table I.  Using Table 5.3 in 
Mann et al.[17] for case of n=13 and Table 1 in Mann et 
al.[14] for remaining cases to obtain the necessary weights, 
we can calculate their BLIE's of μ and σ respectively.  
The meanµ~  and meanσ~ of those random samples are very 
close to 0 and 1, respectively.) 

 
b. Calculate the following statistics: 1Û  in (9), 2Û  in (10),  

3Û  in (11), 4Û  in (12). 
 

c. In the Step a and Step b, 600,000 replicates are used to 
compute the percentiles of 

hÛ (h=1,…, 4) for each 
combination of n, r, k, l, m, s, j. 

 
d. Sort 600,000 results of each combination of n, r, k, l, m, s, j 

in ascending order. 
 

e. Retrieve the value of 
hÛ (h=1,…, 4)  under different 

significance levels of α. 
 

From the above procedures, we obtain the values of 

hÛ (h=1,…, 4) according to the exact position of 
hÛ (h=1,…, 

4) in Step d. 
In our simulation, 600,000 replicates are done for each 

combination of n, r, k, l, m, s, j.  To save space, we only list 
part of the percentiles of 

hÛ (h=1,…, 4) in Table 5 to 8 (see 
Appendix II). 
 
 



 
 
 
 
 
 
 
 
 
 
 
 

     

4. COMPARISON 
In this section, we compare the performance of our method with 

aÛ . We calculate their average lengths of 95% prediction 
intervals, and coverage probabilities for some selected 
combinations of n, r, k, l, m, s, j.  Referring to the data scheme 
mentioned in section 1, the simulation is computed 
by the following procedures:  
a. Give and set μ=0, σ=1. 
 
b. Generate n (n=10,13,20,40) random samples from the 

standard extreme value distribution. 
 
c. Calculate the values of 

hŴ (h=1,…, 4,a), and then make a 

multiply of 
hŴ by 

hÛ (h=1,…, 4, a) (from Table 5 to 9) 
for each combination of n, r, k, l, m, s, j. 

 
d. Repeat steps b to c, execute 10,000 runs and record all 

upper bounds of  the confidence intervals of 
)1( +− snX  

and 
)2( +− snX . 

 
e. From the results in steps c and d, calculate the average 

length of the 10,000 confidence intervals, and coverage 
probabilities for all methods 

 
The results of simulation are listed in Table 2.  It is clear that 

the 95% estimated expected lengths of 2Û  or 
aÛ are shorter.   

The difference among 1Û , 2Û , and 
aÛ is not significant 

(about 0% to 3%). It is also shown that the confidence intervals 
of 

hÛ (h=1,…, 4, a) have almost 95% coverage probabilities.  
It is interesting to note that if the sample size n is larger, then the 
difference of average lengths among 

hÛ (h=1,…, 4, a) will be 
smaller.  And it also showed that simulation has the property of 
convergence. 
 
 
Table 2. The average length of 95％ prediction intervals , 
and coverage probabilities for ( )jX  by difference statistics: 

μ=0, σ=1.  
 

n 
1Û  

2Û  
3Û  

4Û  
aÛ  

10 3.034146 
(95.23％) 

2.834668 
(95.11％) 

3.553925 
(95.22％) 

2.868328 
(95.18％) 

2.729171
(95.01％)

10 1.26180 
(95.04％) 

1.208341 
(94.97％) 

1.462240 
(95.34％) 

1.341985 
(95.18％) 

1.174512
(94.92％)

10 1.156878 
(94.40％) 

1.123969 
(94.52％) 

1.335957 
(94.58％) 

1.196265 
(94.46％) 

1.094455
(94.40％)

13 0.868976 
(95.04％) 

0.846851 
(95.01％) 

0.917785 
(94.93％) 

0.885132 
(94.99％) 

0.762706
(95.15％)

13 0.882302 
(94.69％) 

0.852831 
(94.86％) 

0.999311 
(94.37％) 

0.945090 
(94.53％) 

0.831682
(94.85％)

13 0.853402 
(94.49％) 

0.808929 
(94.56％) 

0.982991 
(94.50％) 

0.869487 
(94.49％) 

0..788812
(94.58％)

20 0.573943 
(94.70％) 

0.545609 
(94.71％) 

0.601589 
(94.64％) 

0.555719 
(94.66％) 

0.500980
(94.87％)

20 0.570727 
(95.14％) 

0.544830 
(95.08％) 

0.638461 
(95.00％) 

0.556134 
(95.05％) 

0.590064
(95.22％)

40 0.248098 
(94.79％) 

0.244359 
(94.82％) 

0.251093 
(94.76％) 

0.247359 
(94.78％) 

0.224264
(94.68％)

40 0.236455 
(94.99％) 

0.233026 
(94.99％) 

0.244821 
(94.86％) 

0.250343 
(94.79％) 

0.230777
(95.04％)

40 0.336696 
(94.96％) 

0.335886 
(94.94％) 

0.349590 
(94.95％) 

0.356296 
(94.90％) 

0.330274
(94.95％)

 
 

5. EXAMPLES 
5.1 Example 1   
Consider the following 13 components were placed on test,  
and the test was terminated at the time of the 10th failure   
(Mann and Fertig[13]).  The first 10 observations are given 
below: 
   0.22, 0.50, 0.88, 1.00, 1.32, 1.33, 1.54, 1.76, 2.50, 3.00. 
It is assumed that the 10 observed data are from the same 
Weibull distribution.  We transform the data to extreme value 
form: the logs of the 10 observations are 

-1.541, -0.693, -0.128, 0.000, 0.278, 0.285, 0.432, 0.565, 
0.916, 1.099. 

 
Table 3. The one-sided 90％ prediction intervals, the 
percentiles of 

kÛ (k=1,…,4, a), and CMd using MLE and 
BLIE (Hsieh[7]). 
 
 

kÛ (11)
kÛ (12) )11(X  

)12(X  

1Û  0.243 0.456 (1.099,1.579) (1.099, 1. 998)

2Û  0.224 0.418 (1.099,1.573) (1.099, 1.987)

3Û  0.268 0.507 (1.099,1.612) (1.099, 2.068)

4Û  0.244 0.458 (1.099,1.600) (1.099, 2.038)

aÛ  0.616 1.134 (1.099,1.535) (1.099, 1.902)
(C, M) - - (1.099,5.263) (1.099, 8.002)
(C, BLIE) - - (1.099,5.276) (1.099, 8.022)
 
Note: CMd=Conditional Method, M=MLE 
 
 
Table 4. The one-sided 95％ prediction intervals and the 
percentiles of 

kÛ (k=1,…,4, a) 

 
kÛ (11)

kÛ (12) )11(X  
)12(X  

1Û  0.148 0.240 (-0.45, 0.122) (-0.45, 0.490)

2Û  0.152 0.245 (-0.45, 0.099) (-0.45, 0.444)

3Û  0.162 0.264 (-0.45, 0.227) (-0.45, 0.690)

4Û  0.165 0.268 (-0.45, 0.126) (-0.45, 0.496)

αÛ  0.542 0.880 (-0.45, 0.135) (-0.45, 0.514)

 
In this case, we have n = 13, r = 0, k = 10, l = 0, m = 0, and s = 3. 
Applying our method to estimate the one-sided 90% prediction 
intervals of 

)11(X and
)12(X .  The results are presented in Table 

III. It is clear that the shorter prediction intervals are obtained by 
the pivotal quantities 2Û and

aÛ . 
 
 
5.2 Example 2 
The following are 10 observations data from Lawless[11].   
-3.57, -2.55, -2.02, -1.66, -1.36, -1.15, -0.95, -0.77, -0.61, -0.45. 
It assumed that above data were obtained from a sample of 20, 
which are distributed according to extreme value distribution,   
and the last 50% data were censored.  And only from the 3rd to 
the 6th failure times and from the 9th to the 10th failure times 
are available.  In other words, this is the case of n = 20, r = 2, k 
= 4, l = 2, m = 2, and s = 10, The one-sided 95% prediction 
intervals of 

)11(X  and 
)12(X are listed in Table 4.  It is obvious 

that the pivotal quantity 2Û has the shortest prediction 
intervals. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 

     

6. DISCUSSION 
From Table 2, the average length of prediction intervals of 1Û , 

2Û , and
aÛ are shorter than

3Û and 
4Û .  Since 

3Û and 
4Û are 

longer than 2Û , 1Û and 2Û  are preferred to both of them.  
The average lengths of prediction intervals of 

3Û and 
4Û are 

longer than 1Û and 2Û . It may be the reason that the power 
operations in geometric means will cause the results extended 
unexpectedly.  Intuitively, our method produces good result 
because we have given different weight to each datum point.  
Following the algorithm of section 3, it is straightforward to 
construct prediction intervals for the future failure time by the 
pivotal quantities 1Û and 2Û .  Note also that 1Û and 

2Û can be applied to any kind of data scheme. 
Comparing with the existing methods, it is true that 

calculation procedures of 
aÛ are simpler than 1Û and 2Û .  

But since the computations of 1Û and 2Û can be easily done 
by computers, it seems to be not an important consideration.  
Furthermore, following the some algorithm, it is not difficult for 
generating and simulating larger sample size n.  Thus it makes 
this method to be potentially more useful than the existing ones.  
For further study, this simulation scheme can be easily applied 
to other family of location and scale distributions. 
 
 
7. APPENDICES 
7.1 Appendix I 
Theorem: If 1

~W in (5) is an estimator of μ and σ based on 
multiple type II censored sample 
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Similarly, it is easy to show that the estimators 2
~U , 

3
~U , and 

4
~U  are also pivotal quantities. 

7.2 Appendix II 
Table 5. The percentiles data of 1Û  distribution for ( )jX . 

n r k l m s j 0.90 0.95 
10 0 3 0 0 7 4 1.355785 2.201880 
10 0 3 0 0 7 5 2.333157 3.681949 
10 0 8 0 0 2 9 0.368497 0.5.3914 
10 0 8 0 0 2 10 0.751464 0.972094 
10 2 5 0 0 3 8 0.996771 1.426663 
10 2 5 0 0 3 9 1.885445 2.568596 
10 3 4 0 0 3 8 0.999649 1.437188 
10 3 4 0 0 3 9 1.879692 2.569213 
10 1 3 1 2 3 8 1.618781 0.864230 
10 1 3 1 2 3 9 1.154031 1.533077 
10 1 2 2 1 4 7 0.722657 1.030894 
10 1 2 2 1 4 8 1.303315 1.769215 
13 0 10 0 0 3 11 0.243662 0.330549 
13 0 10 0 0 3 12 0.456420 0.589753 
13 0 8 0 0 5 9 0.264716 0.369639 
13 0 8 0 0 5 10 0.471422 0.624253 
13 3 6 0 0 4 10 0.785583 1.106489 
13 3 6 0 0 4 11 1.443556 1.935043 
13 4 7 0 0 2 12 0.912021 1.239771 
13 4 7 0 0 2 13 1.908133 2.469798 
13 2 5 1 1 4 10 0.606973 0.843070 
13 2 5 1 1 4 11 1.111241 1.469986 
13 3 6 1 1 2 12 0.773738 1.050499 
13 3 6 1 1 2 13 1.621465 2.075764 
20 0 10 0 0 10 11 0.164343 0.224058 
20 0 10 0 0 10 12 0.283892 0.371838 
20 0 16 0 0 4 17 0.132946 0.177885 
20 0 16 0 0 4 18 0.245659 0.309447 
20 2 4 2 2 10 11 0.378516 0.520569 
20 2 4 2 2 10 12 0.651078 0.854504 
40 0 30 0 0 10 31 0.050056 0.066743 
40 0 30 0 0 10 32 0.087866 0.109813 
40 10 20 0 0 10 31 0.203558 0.269217 
40 10 20 0 0 10 32 0.345067 0.442121 

4 37 0.207640 0.270819 40
40

8 
8 

15
15

3
3

10
10 4 38 0.382493 0.469227 

 
 
Table 6. The percentiles data of 2Û  distribution for ( )jX . 

n r k l m s j 0.90 0.95 
10 0 3 0 0 7 4 1.125945 1.807184 
10 0 3 0 0 7 5 1.926988 3.009241 
10 0 8 0 0 2 9 0.341619 0.463249 
10 0 8 0 0 2 10 0.690662 0.889023 
10 2 5 0 0 3 8 0.854753 1.209239 
10 2 5 0 0 3 9 1.607269 2.163889 
10 3 4 0 0 3 8 0.857231 1.219519 
10 3 4 0 0 3 9 1.602540 2.171974 
10 1 3 1 2 3 8 0.535858 0.744663 
10 1 3 1 2 3 9 0.994515 1.312484 
10 1 2 2 1 4 7 0.626326 0.886672 
10 1 2 2 1 4 8 1.119622 1.518678 
13 0 10 0 0 3 11 0.224299 0.302451 
13 0 10 0 0 3 12 0.418464 0.537054 
13 0 8 0 0 5 9 0.228817 0.317286 
13 0 8 0 0 5 10 0.404464 0.530687 
13 3 6 0 0 4 10 0.678069 0.950597 
13 3 6 0 0 4 11 1.239673 1.644747 
13 4 7 0 0 2 12 0.925312 1.257150 
13 4 7 0 0 2 13 1.925821 2.487037 
13 2 5 1 1 4 10 0.476881 0.655567 
13 2 5 1 1 4 11 0.864392 1.130554 
13 3 6 1 1 2 12 0.683757 0.921912 
13 3 6 1 1 2 13 1.423511 1.812982 
20 0 10 0 0 10 11 0.138502 0.187599 
20 0 10 0 0 10 12 0.238964 0.307889 
20 0 16 0 0 4 17 0.125104 0.166941 
20 0 16 0 0 4 18 0.230551 0.289223 
20 2 4 2 2 10 11 0.289980 0.396636 
20 2 4 2 2 10 12 0.496145 0.645765 
40 0 30 0 0 10 31 0.046921 0.062344 
40 0 30 0 0 10 32 0.082149 0.102351 
40 10 20 0 0 10 31 0.187509 0.248863 
40 10 20 0 0 10 32 0.326648 0.407463 
40 8 15 3 10 4 37 0.207977 0.272013 
40 8 15 3 10 4 38 0.384794 0.467108 
 
 



 
 
 
 
 
 
 
 
 
 
 
 

     

Table 7. The percentiles data of 
3Û  distribution for ( )jX . 

n r k l m s j 0.90 0.95 
10 0 3 0 0 7 4 1.608883 2.721678 
10 0 3 0 0 7 5 2.821951 4.645655 
10 0 8 0 0 2 9 0.415438 0.576626 
10 0 8 0 0 2 10 0.856595 1.138579 
10 2 5 0 0 3 8 1.287732 1.902335 
10 2 5 0 0 3 9 2.484045 3.534942 
10 3 4 0 0 3 8 1.292677 1.923213 
10 3 4 0 0 3 9 2.481441 3.525552 
10 1 3 1 2 3 8 0.788329 1.142375 
10 1 3 1 2 3 9 1.503843 2.067356 
10 1 2 2 1 4 7 1.036246 1.569153 
10 1 2 2 1 4 8 1.934792 2.786440 
13 0 10 0 0 3 11 0.268639 0.369248 
13 0 10 0 0 3 12 0.507211 0.665167 
13 0 8 0 0 5 9 0.294301 0.415125 
13 0 8 0 0 5 10 0.529261 0.710224 
13 3 6 0 0 4 10 1.010156 1.470474 
13 3 6 0 0 4 11 1.893738 2.624943 
13 4 7 0 0 2 12 1.219110 1.723033 
13 4 7 0 0 2 13 2.596685 3.509463 
13 2 5 1 1 4 10 0.783438 1.131463 
13 2 5 1 1 4 11 1.455241 2.007740 
13 3 6 1 1 2 12 1.024048 1.446484 
13 3 6 1 1 2 13 2.188790 2.919691 
20 0 10 0 0 10 11 0.178347 0.245756 
20 0 10 0 0 10 12 0.309257 0.410631 
20 0 16 0 0 4 17 0.142240 0.191015 
20 0 16 0 0 4 18 0.263603 0.334755 
20 2 4 2 2 10 11 0.485984 0.685521 
20 2 4 2 2 10 12 0.851258 1.153520 
40 0 30 0 0 10 31 0.051966 0.069362 
40 0 30 0 0 10 32 0.091289 0.114727 
40 10 20 0 0 10 31 0.251929 0.337695 
40 10 20 0 0 10 32 0.442873 0.559259 
40 8 15 3 10 4 37 0.257641 0.340726 
40 8 15 3 10 4 38 0.479742 0.589852 

 
 
 
 
Table 8. The percentiles data of 4Û distribution for ( )jX  

n r k l m s j 0.90 0.95 
10 0 3 0 0 7 4 1.151481 1.851704 
10 0 3 0 0 7 5 1.970969 3.083778 
10 0 8 0 0 2 9 0.379575 0.521806 
10 0 8 0 0 2 10 0.776022 1.019825 
10 2 5 0 0 3 8 1.069152 1.543437 
10 2 5 0 0 3 9 2.031816 2.827447 
10 3 4 0 0 3 8 1.067482 1.554482 
10 3 4 0 0 3 9 2.026169 2.824255 
10 1 3 1 2 3 8 0.616590 0.866977 
10 1 3 1 2 3 9 1.156301 1.545349 
10 1 2 2 1 4 7 0.689432 0.985376 
10 1 2 2 1 4 8 1.244403 1.689974 
13 0 10 0 0 3 11 0.244019 0.332777 
13 0 10 0 0 3 12 0.458090 0.594576 
13 0 8 0 0 5 9 0.244909 0.340996 
13 0 8 0 0 5 10 0.435766 0.575554 
13 3 6 0 0 4 10 0.882208 1.260661 
13 3 6 0 0 4 11 1.636582 2.243070 
13 4 7 0 0 2 12 1.435964 2.086102 
13 4 7 0 0 2 13 3.087689 4.285415 
13 2 5 1 1 4 10 0.575818 0.805406 
13 2 5 1 1 4 11 1.055841 1.408208 
13 3 6 1 1 2 12 0.952730 1.339496 
13 3 6 1 1 2 13 2.032407 2.687218 
20 0 10 0 0 10 11 0.144297 0.195873 
20 0 10 0 0 10 12 0.248815 .0322439 
20 0 16 0 0 4 17 0.132960 0.178270 
20 0 16 0 0 4 18 0.246340 0.310967 
20 2 4 2 2 10 11 0.319509 0.437563 
20 2 4 2 2 10 12 0.547889 0.717535 
40 0 30 0 0 10 31 0.048600 0.064684 
40 0 30 0 0 10 32 0.085220 0.106602 
40 10 20 0 0 10 31 0.282031 0.379259 
40 10 20 0 0 10 32 0.499665 0.634700 
40 8 15 3 10 4 37 0.291018 0.385185 
40 8 15 3 10 4 38 0.544320 0.673119 
 

Table 9. The percentiles data of 
aÛ  distribution for ( )jX  

n r k l m s j 0.90 0.95 
10 0 3 0 0 7 4 2.429833 3.884042 
10 0 3 0 0 7 5 4.138215 6.444420 
10 0 8 0 0 2 9 0.878576 1.169411 
10 0 8 0 0 2 10 1.732412 2.181317 
10 2 5 0 0 3 8 1.008783 1.420359 
10 2 5 0 0 3 9 1.885141 2.518690 
10 3 4 0 0 3 8 1.013620 1.423626 
10 3 4 0 0 3 9 1.875346 2.521363 
10 1 3 1 2 3 8 0.857669 1.191790 
10 1 3 1 2 3 9 1.591620 2.115796 
10 1 2 2 1 4 7 1.169301 1.808686 
10 1 2 2 1 4 8 2.153508 3.249308 
13 0 10 0 0 3 11 0.616219 0.818953 
13 0 10 0 0 3 12 1.134672 1.423598 
13 0 8 0 0 5 9 0.617341 0.839394 
13 0 8 0 0 5 10 1.072864 1.385328 
13 3 6 0 0 4 10 0.704400 0.981970 
13 3 6 0 0 4 11 1.278436 1.695298 
13 4 7 0 0 2 12 0.806103 1.085826 
13 4 7 0 0 2 13 1.665137 2.113019 
13 2 5 1 1 4 10 0.898447 0.815059 
13 2 5 1 1 4 11 1.075171 1.399081 
13 3 6 1 1 2 12 0.697125 0.929402 
13 3 6 1 1 2 13 1.430224 1.800205 
20 0 10 0 0 10 11 0.403657 0.542627 
20 0 10 0 0 10 12 0.686688 0.871494 
20 0 16 0 0 4 17 0.391437 0.514785 
20 0 16 0 0 4 18 0.710061 0.870636 
20 2 4 2 2 10 11 0.457084 0.643474 
20 2 4 2 2 10 12 0.792695 1.060140 
40 0 30 0 0 10 31 0.175387 0.229385 
40 0 30 0 0 10 32 0.301198 0.370072 
40 10 20 0 0 10 31 0.182691 0.241560 
40 10 20 0 0 10 32 0.317068 0.393065 
40 8 15 3 10 4 37 0.242214 0.315173 
40 8 15 3 10 4 38 0.446239 0.541538 
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