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ABSTRACT 
 
Logistic Distribution is widely used in biostatistics and economics areas. In this paper, we provide 
some suitable pivotal quantities for estimating the prediction intervals of the jth future ordered 
observation in a sample of size n from the Logistic distribution based on doubly type II censored 
samples. We also give simulation study to analyze its feasibility of pivotal quantities. Finally, two 
illustrative examples are also included. 
 
Categories 
G.3 [PROBABILITY AND STATISTICS]: Probabilistic algorithms---Reliability and life testing, 
Random number generation 
 
General Terms 
Reliability 
 
Keywords: pivotal quantity, doubly type II censored samples, Logistic distribution, approximation 
maximum likelihood estimation. 
 
1. INTRODUCTION 
In most researching of reliability, the Weibull distribution is widely used as a model of lifetime data 
(Bain and Engelhardt [2], Agresti [1). Let us consider the two-parameter Weibull distribution with 
probability density function (pdf) 

},)(exp{)()( 1 ββ

ααα
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and cumulative distribution function(cdf) 
},)(exp{1)( β

α
ttW −−=                    (2) 

where β> 0 and α> 0 are the shape and scale parameters, respectively. 
 
Logistic distribution is similar to Weibull distribution. For convenience , we adopt Weibull 
distribution to explain the process.  It is worth noting that if T is a random variable having the 
Weibull cdf given by formula (2), then the random variable X = lnT is distributed as a smallest Type I 
extreme value variate with pdf 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 

     

Logistic distribution with probability density function (pdf) 
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and cumulative distribution function(cdf) 
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where σµ  and   are location and scale parameters, respectively. The notation Y ~ 

P( ), , βσµ will be used to indicate that a random variable X has c.d.f. (1). 
 

In life testing studies, several lifetimes of units put on test may not be observed due to time 
limitations or money and material resources restrictions on data collection.  Consider an experiment 
in which n identical components are placed on test simultaneously.  Suppose the experiment was 
terminated when the (n-s)th component failed, thus censoring the last s components.  Such a sample 
is called Type II right censored sample.  If some initial r observations are also censored, it is called 
Type II doubly censored. 
  The studies of estimating the prediction intervals of the future data are quite important and 
valuable in lifetime analysis.  There have been several studies in the literature dealing with such 
problems.  For the exponential distribution, Lawless[9] and Likes[12] estimated the prediction 
intervals based on the order statistics, ( )jX )( njr ≤< , of a sample while the first r data of the sample 
were observed.  Mann and Grubbs[15] proposed an alternative method to construct approximate 
prediction intervals.  Kaminsky and Nelson[8] constructed prediction intervals by using the best 
linear unbiased estimates (BLUE) of the parameters as a pivotal statistic.  For the Weibull 
distribution, Mann and Saunders[16] used three specially selected order statistics to predict the 
minimum of a single future sample.  Engelhardt and Bain[5] constructed the prediction limits for 
the jth smallest of some set of future observations.  Fertig et al.[6] provided Monte Carlo estimates 
of percentiles of the distribution of a statistics S for constructing prediction intervals of a future 
observation.  Lawless[10] used a conditional method to obtain a prediction interval for the first 
order statistic of a set of future observations, based on previous data; Hsieh[7] used the same 
technique to construct prediction intervals for future observations. Mann and Fertig[14] constructed 
the tables for obtaining the best linear invariant estimates (BLIE) of parameters.  Balakrishnan and 
Cohen[3] proposed an approximate maximum likelihood   estimates (AMLE) of parameters.  All 
these researches are under the scheme that the available data is either right censored or doubly 
censored.  
  It is well known that the Type II censored data, the right, left and doubly censored data are all 
special cases of multiple censored data.  In this paper, we consider the general case of the multiple 
Type II censored data scheme.  Suppose n components are placed on test in life testing.  The 
lifetime of the first r, the middle l, and the last s components are assumed unobserved or missing. 
That is, we assume 

)1( +rX  < 
)2( +rX <…<

)( krX +
and 

)1( +++ lkrX <
)2( +++ lkrX <…<

)( snX −
 are observable and no 

others.  In practice, multiple Type II censored problems may arise when some components failed 
between two points of observation with exact times of these failure unobservable components 
(Balasubramanian and Balakrishnan [4]). 
  In next section, following the ideas of Wu et al. [18], we present our method of constructing the 
prediction intervals of the future unknown observations for Type II censored data.  We describe the 
procedure for calculating the percentiles of the distributions of the pivotal quantities, and the 
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simulation results are compared with the existing method in section 3 and 4, respectively.  In 
section 5, we illustrate our method with two examples.  A brief discussion is presented in section 6. 
 
 
2. A GENERAL FORM OF PIVOTAL QUANTITY 
The prediction intervals of our method for ( )jX  are based on a subset ( )
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Y  is the ith order statistic of 

iY .  We define some pivotal quantities (proof shown in 

Appendix I) of the following general forms,  
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1
~W and 2

~W come from the ideas of arithmetic means, and 
3

~W and 4
~W  follow the concepts of 

geometric means.  The equations (5) to (8) are general forms.  Wu et al. [18] consider the case 
where every datum of different position has the same weight.  In the case of extreme value 



 
 
 
 
 
 
 
 
 
 
 
 

     

distribution, it seems reasonable to assume that the weight of each datum point should be different 
for different position.  From the properties of the extreme value distribution, we suggest that the 
weighted factors are equal to  ∑ =

n

t nn ti
YEgYEg

1 )()( ))((/))((  in 1
~W , where )( )( inYE  is the expected 

values of 
)( inY .  The )( )( inYE is defined as ∫

∞

∞− )()()( )(
iii nnn dYYqY , where )( )( inYq  is the pdf of the nith 

order statistic of 
)( inY .  Since the parameters µ and σ in (5) will be cancelled (see the proof in 

Appendix I), without loss of generosity, we simply treat them as standard extreme value distribution.  
Therefore, )( )( inYE  will be constants and set zez eezg −=)( , )( )( inYEz = .    It also showed that 
the weighted factors do not depend on the parameters μ and σ. 

According to the general data scheme mentioned in section 1, the pivotal quantities of (5) to (8) 
are transformed to the following forms 
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For comparison, the other pivotal quantity is 

aÛ .  Let 
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Theσ̂ is the AMLE of σ, which can be obtained from Balakrishnan and Cohen[3].  The percentiles 
data of 

aÛ  distribution are listed in Table 9 (see Appendix II). 
From equations (9) to (12), the distributions of 

hÛ depend only on n, r, k, l, m, s, j, but not on μ 
and σ. Then, we have 
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Table 1.  The properties of parametersµ~andσ~of 60,000 random samples for each combination 
case. 

 
 
Therefore, )ˆ),,,,,,;1(ˆ,( )()( hhsnsn WjsmlkrnuXX ×−+−− α  , h = 1,…,4 are one-sided 100(1-α)％ prediction 
intervals of  ( )jX  based on m+k observations. 
 
 
3. CALCULATION AND ALGORITHM 
The exact distributions of the pivotal quantities

hÛ (h=1,…, 4) can not be derived algebraically, but 
we can approximate the distributions of 

hÛ (h=1,…, 4) by using large quantities of the Monte Carlo 
sampling with some programming algorithms to generate the percentiles of 

hÛ .  All the 
simulations were run with the aid Microsoft Quick Basic 4.5 program and Foxbase database software 
package.  The procedures for generating the percentiles of 

hÛ are as follows: 
a. Give and set μ=0, σ=1.  (For providing the properties of parameters µ~  and σ~  of the 



 
 
 
 
 
 
 
 
 
 
 
 

     

random samples generated by computer, 60,000 Monte Carlo runs are done for each combination 
of n, r, k, l, m, s, j (some selected cases).  The results are presented in Table I.  Using Table 5.3 
in Mann et al.[17] for case of n=13 and Table 1 in Mann et al.[14] for remaining cases to obtain 
the necessary weights, we can calculate their BLIE's of μ and σ respectively.  The meanµ~  and 

meanσ~ of those random samples are very close to 0 and 1, respectively.) 
 

b. Calculate the following statistics: 1Û  in (9), 2Û  in (10),  
3Û  in (11), 4Û  in (12). 

 
c. In the Step a and Step b, 600,000 replicates are used to compute the percentiles of 

hÛ (h=1,…, 4) 
for each combination of n, r, k, l, m, s, j. 

 
d. Sort 600,000 results of each combination of n, r, k, l, m, s, j in ascending order. 

 
e. Retrieve the value of 

hÛ (h=1,…, 4)  under different significance levels of α. 
 

From the above procedures, we obtain the values of 
hÛ (h=1,…, 4) according to the exact position 

of 
hÛ (h=1,…, 4) in Step d. 

In our simulation, 600,000 replicates are done for each combination of n, r, k, l, m, s, j.  To save 
space, we only list part of the percentiles of 

hÛ (h=1,…, 4) in Table 5 to 8 (see Appendix II). 
 
 
4. COMPARISON 
In this section, we compare the performance of our method with 

aÛ . We calculate their average 
lengths of 95% prediction intervals, and coverage probabilities for some selected combinations of n, 
r, k, l, m, s, j.  Referring to the data scheme mentioned in section 1, the simulation is computed 
by the following procedures:  
a. Give and set μ=0, σ=1. 
 
b. Generate n (n=10,13,20,40) random samples from the standard extreme value distribution. 
 
c. Calculate the values of 

hŴ (h=1,…, 4,a), and then make a multiply of 
hŴ by 

hÛ (h=1,…, 4, a) 
(from Table 5 to 9) for each combination of n, r, k, l, m, s, j. 

 
d. Repeat steps b to c, execute 10,000 runs and record all upper bounds of  the confidence intervals 

of 
)1( +− snX  and 

)2( +− snX . 
 
e. From the results in steps c and d, calculate the average length of the 10,000 confidence intervals, 

and coverage probabilities for all methods 
 

The results of simulation are listed in Table 2.  It is clear that the 95% estimated expected lengths 
of 2Û  or 

aÛ are shorter.   The difference among 1Û , 2Û , and 
aÛ is not significant (about 0% to 

3%). It is also shown that the confidence intervals of 
hÛ (h=1,…, 4, a) have almost 95% coverage 

probabilities.  It is interesting to note that if the sample size n is larger, then the difference of 
average lengths among 

hÛ (h=1,…, 4, a) will be smaller.  And it also showed that simulation has 
the property of convergence. 
 



 
 
 
 
 
 
 
 
 
 
 
 

     

 
Table 2. The average length of 95％ prediction intervals , and coverage probabilities for ( )jX  
by difference statistics: μ=0, σ=1.  
 
 
5. EXAMPLES 
5.1 Example 1   
Consider the following 13 components were placed on test,  and the test was terminated at the time 
of the 10th failure   (Mann and Fertig[13]).  The first 10 observations are given below: 
   0.22, 0.50, 0.88, 1.00, 1.32, 1.33, 1.54, 1.76, 2.50, 3.00. 
It is assumed that the 10 observed data are from the same Weibull distribution.  We transform the 
data to extreme value form: the logs of the 10 observations are 

-1.541, -0.693, -0.128, 0.000, 0.278, 0.285, 0.432, 0.565, 0.916, 1.099. 
 
Table 3. The one-sided 90％ prediction intervals, the percentiles of 

kÛ (k=1,…,4, a), and CMd 
using MLE and BLIE (Hsieh[7]). 
 
Note: CMd=Conditional Method, M=MLE 
 
 
Table 4. The one-sided 95％ prediction intervals and the percentiles of 

kÛ (k=1,…,4, a) 
 
In this case, we have n = 13, r = 0, k = 10, l = 0, m = 0, and s = 3. Applying our method to estimate 
the one-sided 90% prediction intervals of 

)11(X and
)12(X .  The results are presented in Table III. It is 

clear that the shorter prediction intervals are obtained by the pivotal quantities 2Û and
aÛ . 

 
 
5.2 Example 2 
The following are 10 observations data from Lawless[11].   
-3.57, -2.55, -2.02, -1.66, -1.36, -1.15, -0.95, -0.77, -0.61, -0.45. It assumed that above data were 
obtained from a sample of 20, which are distributed according to extreme value distribution,   and 
the last 50% data were censored.  And only from the 3rd to the 6th failure times and from the 9th to 
the 10th failure times are available.  In other words, this is the case of n = 20, r = 2, k = 4, l = 2, m = 
2, and s = 10, The one-sided 95% prediction intervals of 

)11(X  and 
)12(X are listed in Table 4.  It is 

obvious that the pivotal quantity 2Û has the shortest prediction intervals. 
 
 
6. DISCUSSION 
From Table 2, the average length of prediction intervals of 1Û , 2Û , and

aÛ are shorter than
3Û and 

4Û .  
Since 

3Û and 
4Û are longer than 2Û , 1Û and 2Û  are preferred to both of them.  The average 

lengths of prediction intervals of 
3Û and 

4Û are longer than 1Û and 2Û . It may be the reason that the 
power operations in geometric means will cause the results extended unexpectedly.  Intuitively, our 
method produces good result because we have given different weight to each datum point.  
Following the algorithm of section 3, it is straightforward to construct prediction intervals for the 
future failure time by the pivotal quantities 1Û and 2Û .  Note also that 1Û and 2Û can be applied 
to any kind of data scheme. 

Comparing with the existing methods, it is true that calculation procedures of 
aÛ are simpler than 



 
 
 
 
 
 
 
 
 
 
 
 

     

1Û and 2Û .  But since the computations of 1Û and 2Û can be easily done by computers, it seems to 
be not an important consideration.  Furthermore, following the some algorithm, it is not difficult for 
generating and simulating larger sample size n.  Thus it makes this method to be potentially more 
useful than the existing ones.  For further study, this simulation scheme can be easily applied to 
other family of location and scale distributions. 
 
 
7. APPENDICES 
7.1 Appendix I 
Theorem: If 1

~W in (5) is an estimator of μ and σ based on multiple type II censored sample 
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Similarly, it is easy to show that the estimators 2
~U , 

3
~U , and 4

~U  are also pivotal quantities. 
7.2 Appendix II 
Table 5. The percentiles data of 1Û  distribution for ( )jX . 
 
Table 6. The percentiles data of 2Û  distribution for ( )jX . 
 
Table 7. The percentiles data of 

3Û  distribution for ( )jX . 
 
Table 8. The percentiles data of 4Û distribution for ( )jX  
 
Table 9. The percentiles data of 

aÛ  distribution for ( )jX  
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