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Abstract—We propose an integral-equation formulation for analyzing
EM field of 2-D dielectric waveguide devices. The complex 2-D device
is first divided into slices of 1-D horizontally layered structures. The
entire EM solutions are determined by transverse field functions on the
interfaces between slices. These functions are governed by a system of
integral equations whose kernels are constructed from layer modes of
each slice. These unknown tangential field functions are expanded as
some linear combination of known basis functions. Various waveguide
devices such as multi-mode interferometers, waveguide crossing and
quasi-adiabatic tapered waveguides can be formulated and studied
using present formulation.

1. INTRODUCTION

Dielectric waveguides devices are important building blocks in modern
optical communication systems [1, 2]. The working principles of
these passive dielectric waveguide devices are based on all EM wave
physics, including propagation, reflection, transmission, diffraction,
scattering, interferencing and so on [3]. These device structures are
very large with a typical dimension of a few millimeters to a few
centimeters. Improved electromagnetic theory and computational
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methods are needed to handle the challenge of modeling these large
passive waveguides and devices. A 3-D dielectric waveguide device
has all six EM components. Their modes are in general complex
and the field problems are intrinsically vectorial. Fortunately most
3-D devices can be approximated by their equivalent 2-D structures
via effectively index averaging [4, 5] along the least important axis
(typically the depth axis when the etching depth is very deep). 2-
D dielectric waveguide problems are divided into TE and TM cases.
The two cases are decoupled. Each can be treated as a scalar wave
problem [6, 7]. For complex but compact optical devices, methods
such as the finite-difference time-domain methods (FD-TD) [8–11],
frequency-domain finite-difference methods (FD-FD) [12, 13] and the
finite element method [14, 15] can be quite effective. For extremely
large optical structures with smooth changing index profiles such as
the adiabatic waveguides, the beam propagation method (BPM) and
its variations [16, 17] are extensively used for field evolutions and mode
profile determination. BPM methods apply a one-way approximation
to the Maxwell’s equations making it possible to advance the field
solutions plane by plane along the propagation axis.

We present a coupled transverse-mode integral-equation (CTMIE)
formulation [18–20], a generalization of the mode matching method
(MMM) [21–23], to study bidirectional traffic inside a complex
waveguide device. Like CTMIE, MMM employs the mode matching
principle to match the continuity conditions at slice interface. The
unknowns are the reflection/transmission coefficients in the first
and last slice and standing wave coefficients in between. They
satisfy a set of matrix equations. The unknown in CTMIE are
the transverse-tangential field functions which satisfy exact coupled
integral equations. This paper handles the background information
and deals with the theoretical and numerical formulation of CTMIE.
Real waveguide examples will be discussed in our future papers.

2. CTMIE THEORY

A general dielectric waveguide device is shown in Fig. 1. The original
structure is divided into sections by a series of vertical cuts. Each
section, called a slice, is then approximated by a horizontally layered
dielectric waveguide. There are altogether (N+1) slices and N vertical
interfaces. The left end is the input waveguide while the right end
is the exit waveguides. The formulation allows different boundary
conditions, such as Dirichlet’s B. C., Neumann’s B. C., or Sommerfeld
radiation conditions [6], at the right end of this structure which
is terminated with either a perfectly electric/magnetic conducting
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Figure 1. A General 2-D dielectric waveguide is divided to (N + 1)
regions (slices) made of horizontally layered dielectric waveguides. For
TE problems, the unknown functions are the tangential 1-D functions{
Em

y (x)
}
, m = 1, · · · , N on the interfaces between two adjacent

slices, whereas for TM problems, the unknowns are
{
Hm

y (x)
}
, m =

1, · · · , N . At the top bottom boundaries are PECW or PMCW. In the
transmitted region, the boundary can be either PECW/ PMWC or be
extended to infinity.

wall (PECW/PMCW) or a waveguide extended to infinity. To help
discretizing the slice modes (layer modes), we place two PECWs at
both the upper and lower boundaries. In cases that EM field may leak
into the upper or lower part of the device, an artificial absorbing layer
such as the PML [11, 24] can be added to reduce unwanted reflections
from these artificial boundaries.

At the interface across two neighboring slices, the tangential field
function Ey(x, z) or Hy(x, z) is required to be continuous. We shall
denote these unknown interfacial field functions by the calligraphic
letters E(x) and H(x) symbols. The other tangential component is
the Hx(x) for TE case and Ex(x) for TM case. They can then
be generated by taking the z-derivative of the Ey(x, z) and Hy(x, z)
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respectively. The continuity of these x-component functions will lead
to coupled integral equations for all these E(x) or H(x) functions on
all N interfaces. We shall denote the equations by coupled transverse-
mode integral equation, or “CTMIE” for short. The simplest TMIE
formulation for studying the scattering off a periodic grating can be
found in chapter 7 of Ref. [6]. The application of TMIE to the
dielectric waveguide termination problems can be found in Ref. [18]
in which the authors first coined the term “TMIE”. The 3-D version of
CTMIE called VCTMIE was used to compute vector modes of complex
rectangular-like dielectric waveguides [19, 20].

It is well-known that differential equations for these TE and TM
slice modes can be formulated in Sturm-Liouville form [7], and thus
they are orthonormal. By writing TE mode of Ey(x, z) and TM mode
of Hy(x, z) as φe(x) exp(−jβz) and φh(x) exp(−jβz), we obtain the
following differential equations for the TE eigenfunction φe(x) and TM
eigenfunction φh(x):

φ′′
e(x) + k2

0εr(x)φe(x) = λeφe(x),∫
φe,i(x)

1
µr(x)

[φe,i]
∗ dx = δi,j

(1a)

[
φ′

h(x)
εr(x)

]′
+ k2

0φh(x) = λh
φh(x)
εr(x)

,∫
φh,i(x)

1
εr(x)

[φh,i]
∗ dx = δi,j

(1b)

where k0 is the wavenumber in a vacuum and x-dependent εr(x) is the
relative dielectric constant within each slice. The relative permeability
constant µr is assumed to be unity. The single ‘prime’ denotes the
first derivative with respect to x. Here, β is the propagation constant
within each slice.

To derive CTMIE, let us consider the TM case first. The TE case
is a simplification of the TM case for dielectric media with constant
permeability µ0. For TM modes, the transverse magnetic field intensity
functions in each slice can be written as a linear combination of the
slice layer mode solution. In the incident region, we have both incident
wave and reflected waves which can be written as:

H(1)
y (x, z) = φ

(1)
i (x)e−jβ

(1)
i (z−z1)

+
∑

n

r′nφ
(1)
n (x)ejβ

(1)
n (z−z1), z < z1 (2a)
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Here we assume that the incident field is the ith mode in the
input waveguide. To facilitate CTMIE derivation, we shall combine
the incident wave with a 100% reflected wave of the same mode. Thus
we have

H(1)
y (x, z) = −2jφ(1)

i (x) sinβ
(1)
i (z − z1)

+
∑

n

r′nφ
(1)
n (x)ejβ

(1)
i (z−z1), z < z1 (2b)

The reflection coefficient r′ is related to the unprimed rn by

rn = r′n if n �= i

rn = r′n − 1 if n = i.
(2c)

For slice m, 1 < m < N + 1 corresponding to waves in the scattering
regions, the complete field solutions are made of both forward and
backward traveling slice modes:

H(m)
y (x, z) =

∑
n

â(m)
n φ(m)

n (x) exp
[
−jβ(m)

n (z−zm−1)
]

+
∑

n

b̂(m)
n φ(m)

n (x)exp
[
−jβ(m)

n (zm−z)
]
, zm−1<z<zm (3a)

They can be written in terms of sine and cosine functions, or in terms
of the following two shifted normalized sine functions (SNS) as

H(m)
y (x, z) =

∑
n

a(m)
n φ(m)

n (x)
sinβ

(m)
n (zm−z)

sin
(
β

(m)
n ∆zm

)

+b(m)
n φ(m)

n (x)
sinβ

(m)
n (z−zm−1)

sin
(
β

(m)
n ∆zm

) , ∆zm =zm−zm−1. (3b)

Fields in the last slice (slice N+1), with an output waveguide that
extends to infinity (transparent boundary condition, TBC), we have

H(N+1)
y (x, z) =

∑
n

tnφ
(N+1)
n (x)e−jβ

(N+1)
n (z−zN ), z > zN

H(N)(x) = H(N+1)
y (x, z1) =

∑
n

tnφ
(N+1)
n (x)

(3c)
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For PMCW (TM case, magnetic wall)

H(N+1)
y (x, z) =

∑
n

tnφ
(N+1)
n (x)

sinβ
(N+1)
n (zN+1 − z)

sinβ
(N+1)
n ∆zN+1

,

∆zN+1 = zN+1 − zN

(3d)

For PECW case, (TM case, electric wall)

H(N+1)
y (x, z) =

∑
n

tnφ
(N+1)
n (x)

cosβ(N+1)
n (zN+1 − z)

cosβ(N+1)
n ∆zN+1

. (3e)

Equation (3b) remains valid as long as the two identical denominators
sin

(
β

(m)
n ∆zm

)
remain non-zero. The advantages of using the SNS are

that one can easily verify that at z = zm−1

H(m−1)(x) = H(m)
y (x, zm−1) =

∑
n

a(m)
n φ(m)

n (x), (4a)

and at z = zm

H(m)(x) = H(m)
y (x, zm) =

∑
n

b(m)
n φ(m)

n (x), 1 ≤ m ≤ N (4b)

For the same reason, we define rn in such a way that the first unknown
transverse field function H(1)(x) which is given by

H(1)(x) = H(1)
y (x, z1) =

∑
n

rnφ
(1)
n (x), (4c)

is completely made of reflection wave fields. The reflection coefficients
are obtained via the following integration using the orthonormal
property of the eigenfunctions:

rn =

∞∫
−∞

H(1)(x)
1

ε
(1)
r (x)

φ∗(1)
n (x) dx, (5a)

Likewise the SNS coefficients as well as the transmission coefficients
can be obtain

a(m)
n =

∞∫
−∞

H(m−1)(x)
1

ε
(m)
r (x)

φ∗(m)
n (x)dx,

b(m)
n =

∞∫
−∞

H(m)(x)
1

ε
(m)
r (x)

φ∗(m)
n (x)dx,

(5b)
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and

tn =

∞∫
−∞

H(N)(x)
1

ε
(N)
r (x)

φ∗(N)
n (x)dx. (5c)

Given Eqs. (1a)–(3e) for the tangential magnetic field Hy(x, z),
we can obtain the tangential electric field intensity Ex(x, z) as

E(1)
x (x, z) =

−1
ωε(1)(x)

{
2β(1)

i φ
(1)
i (x) cosβ(1)

i (z − z1)

−
∑

n

β(1)
n rnφ

(1)
n (x)ejβ

(1)
n (z−z1)

}
. (6a)

E(m)
x (x, z) =

j

ωε(m)




∑
n

β(m)
n a(m)

n φ(m)
n (x)

cosβ(m)
n (zm − z)

sin
(
β

(m)
n ∆zm

)

−β(m)
n b(m)

n φ(m)
n (x)

cosβ(m)
n (z − zm−1)

sin
(
β

(m)
n ∆zm

)

 (6b)

Finally, in the last region, first the TBC case,

E(N+1)
x (x, z) =

−1
ωε(N+1)(x)

∑
n

β(N+1)
n tnφ

(N+1)
n (x) · ψh(z), (6c)

where

ψh(z) =




e−jβ
(N+1)
n (z−zN ), (TBC)

− cosβ(N+1)
n (zN+1 − z)

sinβ
(N+1)
n zN+1

, (TM, PEMW)

sinβ
(N+1)
n (zN+1 − z)

cosβ(N+1)
n ∆zN+1

, (TM, PECW)

(6d)

We can represent the entire 2-D field Ex(x, z) in term of a set of
unknown functions

{
H(m)(x)

}
, m = 1, · · · , N . But first, we need to

define TM mode impedance and Green’s operators

η(m)
n � E

(m)
x

H
(m)
y

=
β

(m)
n

ωε0
m = 1 . . . N + 1, (TM impedance) (7a)



336 Chang and Sheng

The Green’s operator takes a magnetic function and transforms it to
an electric field function via integration:

Ex(x, z) =
∫

G(x, x′, z)Hy(x, z)dx′.

In the input waveguide, we have

E(1)
x (x, z)=−2η(1)

i

φ
(1)
i (x)

ε
(1)
r (x)

cosβ(1)
i (z−z1)+

∫
G(1)

h H1(x′)dx′

G(1)
h (x, x′, z)=

∑
n

η(1)
n

φ
(1)
n (x)

ε
(1)
r (x)

φ
∗(1)
n (x′)

ε
(1)
r (x′)

ejβ
(1)
n (z−z1)

(7b)

In the middle regions, we have

E(m)
x (x, z) =

∫
G(m,l)

h Hm−1(x′)dx′ +
∫

G(m,r)
h Hm(x′)dx′,

G(m,l)
h (x, x′, z) = j

∑
n

η(m)
n

φ
(m)
n

ε
(m)
r

φ
∗(m)
n (x′)

ε
(m)
r (x′)

cosβ(m)
n (zm − z)

sin
(
β

(m)
n ∆zm

) ,

G(m,r)
h (x, x′, z) = −j

∑
n

η(m)
n

φ
(m)
n

ε
(m)
r

φ
∗(m)
n (x′)

ε
(m)
r (x′)

cosβ(m)
n (z − zm−1)

sin
(
β

(m)
n ∆zm

) .

(7c)

In the last region, we have

E(N+1)
x (x, z) =

∫
G(N+1)

h (x, x′, z)HN (x′)dx′

G(N+1)
h (x, x′, z) =

∑
n

η(N+1)
n

φ
(N+1)
n

ε
(N+1)
r

φ
∗(N+1)
n (x′)

ε
(N+1)
r (x′)

ψh(z),
(7d)

In the expressions above, the asterisk (*) denotes the complex
conjugate. Next, we will further classify the two Green’s operators
(Equation (7c)) in the middle regions into four operators

P(m)
h = G(m,l)

h (zm) = j
∞∑

n=1

η(m)
n

φ
(m)
n (x)

ε
(m)
r (x)

φ
∗(m)
n (x′)

ε
(m)
r (x′)

csc(β(m)
n ∆zm)

Q(m)
h = G(m,l)

h (zm−1) = j

∞∑
n=1

η(m)
n

φ
(m)
n (x)

ε
(m)
r (x)

φ
∗(m)
n (x′)

ε
(m)
r (x′)

cot(β(m)
n ∆zm)
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R(m)
h =G(m,r)

h (zm)=−j
∞∑

n=1

η(m)
n

φ
(m)
n (x)

ε
(m)
r (x)

φ
∗(m)
n (x′)

ε
(m)
r (x′)

cot(β(m)
n ∆zm)

S(m)
h =G(m,r)

h (zm−1)=−j

∞∑
n=1

η(m)
n

φ
(m)
n (x)

ε
(m)
r (x)

φ
∗(m)
n (x′)

ε
(m)
r (x′)

csc(β(m)
n ∆zm)

S(m)
h =−P(m)

h , Q(m)
h = −R(m)

h , η(m)
n =

β
(m)
n

ωε0

(8a)

Figure 2. P Q R S Green’s operators.

Figure 2 illustrates the physical significance of these four operators
P(m)

h operator “propagates” the left-interface source functions
Hm−1(x) to the right-interface target function Em(x). Q(m)

h operator
“back reflects” the left-interface source function Hm−1(x) to the right-
interface target function Em(x). R(m)

h operator “reflects” the right
source functions Hm to the left target function Em−1. S(m)

h : operator
“back propagates” the right source function Hm to the left target
function Em−1. The letter P is chosen for forward propagation and
R is chosen for reflection from a forward wave. The letter Q and S
are chosen for reflection and propagation in the backward direction.
Note that letters “P, Q” go before letters “R, S” as the word “left”
goes before the word “right”. So we associated P(m)

h , Q(m)
h operators

with the left source function Hm−1 while R(m)
h , S(m)

h operators are
associated with the right source function Hm. This situation is further
illustrated in Figure 2.

Using these four operators, we may express the two transverse
electric field functions on the left and right boundaries of the mth slice
in region m.

Em−1(x)=E(m)
x (x, zm−1)=

∫
Q(m)

h Hm−1(x′)dx′+
∫

S(m)
h Hm(x′)dx′,

Em−1(x)=E(m)
x (x, zm)=

∫
P(m)

h Hm−1(x′)dx′+
∫

R(m)
h Hm(x′)dx′

(8b)
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Repeat this way for first and last regions, we have

E1(x) = −2η(1)
i

φ
(1)
i (x)

ε
(1)
r (x)

+
∫

R(1)
h (x, x′)H1(x′)dx′

R(1)
h (x, x′) =

∑
η(1)

n

φ
(1)
n (x)

ε
(1)
r (x)

φ
∗(1)
n (x′)

ε
(1)
r (x′)

(8c)

EN (x) =
∫

Q(N+1)
h (x, x′)HN (x′)dx′

Q(N+1)
h (x, x′) =

∑
q(N+1)
n

φ
(N+1)
n (x)

ε
(N+1)
r (x)

φ
∗(N+1)
n (x′)

ε
(N+1)
r (x′)

q(N+1)
n =



η

(N+1)
n , TBC
−jη

(N+1)
n cot

(
β

(i)
k ∆zN+1

)
, TM, PMCW

jη
(N+1)
n tan

(
β

(i)
k ∆zN+1

)
, TE, PECW

(8d)

Up to now, we have not imposed any condition onto the N
unknown tangential magnetic fields {Hm(x)} , m = 1, · · · , N . We
know that given these 1-D functions {Hm}, we are able to write the
entire 2-D vector field functions within each region. We are able,
in particular, write the tangential electric field at the slice interfaces
{Em(x)} , m = 1, · · · , N in terms of {Hm(x)} using Eqs. (8c)–(8d).
The continuity conditions of these tangential electric fields {Em(x)}
lead to the following coupled integral equations for the unknown
functions {Hm(x)}. We will derive these CTMIEs for following various
cases:

Case N = 1:
For this case, there are only two operators involved. Thus we have:∫
dx′R(1)

h (x, x′) · H1(x′) =
∫

dx′Q(2)
h (x, x′) · H1(x′) + 2Einc(x)

⇒
∫

dx′G1,1(x, x′) · H1(x′)=2Einc(x), (9a)

G1,1(x, x′) = R(1)
h (x, x′) − Q(2)

h (x, x′),

where the incident transverse electric field is given by

Einc(x) =
β

(1)
i

ωε(1)(x)
φ

(1)
i (x) = η

(1)
i

φ
(1)
i (x)

ε
(1)
r (x)

. (9b)
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Note that except for the Q(2)
h operator which is located in the last

region and is given by Eq. (8d), all other operators are given by
Eq. (8a).

Figure 3. CTMIE operators for N = 2 case.

Case N = 2:
For this case, there are six operators involved as indicated in

Figure 3. We can write one equation for equating the two adjacent
tangential electric fields on each of the two vertical lines. Thus we
have: ∫

dx′
[
R(1)

h (x, x′) 0
P(2)

h (x, x′) R(2)
h (x, x′)

] [
H1(x′)
H2(x′)

]

=
∫

dx′
[
Q(2)

h (x, x′) S(2)
h (x, x′)

0 Q(3)
h (x, x′)

] [
H1(x′)
H2(x′)

]
+

[
2Einc(x)

0

]
(9c)

This leads to the following two by two matrix operators:∫
dx′

[
G1,1(x, x′) G1,2(x, x′)
G2,1(x, x′) G2,2(x, x′)

] [
H1(x′)
H2(x′)

]
=

[
2Einc(x)

0

]

G1,1 = R(1)
h − Q(2)

h , G1,2 = −S(2)
h

G2,1 = P(2)
h , G2,2 = R(2)

h − Q(3)
h

(9d)

Note that operator Q(3)
h located in the last region is given by Eq. (8d)

Cases N >= 3:
For complex waveguide devices, we may use N + 1 >= 4 slices

to approximate the underlying device. This will lead to the following
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CTMIE equation with an N ×N matrix operator, G

∫
dx′




G1,1 G1,2 0 · · · 0
...

. . .
... · · · 0

· · · · · · Gi,i · · · 0
...

...
...

. . .
...

0 · · · 0 GN,N−1 GN,N







H1
...
Hi
...

HN


 =




2Einc
...
0
...
0


 (10a)

Each of the matrix element is an operator given by

G1,1 = R(1)
h − Q(2)

h , G1,2 = −S(2)
h

Gi,i−1 = P(i)
h , Gi,i = R(i)

h −Q(i+1)
h , Gi,i+1 = −S(i+1)

h , i = 1 . . . N−1

Gi+1,i = P(i+1)
h , GN,N−1 = P(N)

h , GN,N = R(N)
h − Q(N+1)

h ,

−S(i)
h = P(i)

h , Gi,i+1 = Gi+1,i, i = 1 . . . N − 1.
(10b)

Thus we have completed the derivation of CTMIE for the TM
cases. TE cases follow TM results directly if we replace all 2-D field
functions Hy(x, z) and Ex(x, z) by Ey(x, z) and Hx(x, z), and we
substitute all 1-D field functions H(x) by E(x). We also replace ε(x)
by µ0 and change the TM wave impedance to the TE wave admittance.
Furthermore, a left-handed coordinate system is assumed for the TE
case to make the above rules work.

TE mode wave admittance is given below:

y(m)
n � H

(m)
x

E
(m)
y

=
ωµ0

β
(m)
n

(TE admittance). (10c)

The definition of TM wave impedance is given by Eq. (7a). An
additional subtle difference between TE and TM cases lies in handling
three possible boundary conditions in the last region. In the last region,
for TE case, we have:

H(N+1)
z (x, z) =

∫
G(N+1)

e (x, x′, z)EN (x′)dx′

G(N+1)
e (x, x′, z) =

∑
n

y(N+1)
n φ(N+1)

n φ∗(N+1)
n (x′)ψe(z),

(10d)
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where

ψe(z) =




e−jβ
(N+1)
n (z−zN ), (TBC),

− cosβ(N+1)
n (zN+1 − z)

sinβ
(N+1)
n zN+1

, (TE, PECW)

sinβ
(N+1)
n (zN+1 − z)

cosβ(N+1)
n ∆zN+1

, (TE, PMCW).

, (10e)

Finally for TE case, Einc in Eq. (10a) is replaced by the incident
transverse magnetic field Hinc(x) given by

Hinc(x) =
ωµ0

β
(1)
i

φ
(1)
i (x) = y

(1)
i φ

(1)
i (x). (11a)

We will also need to use the TE admittance for the last region:

q(N+1)
n =




y
(N+1)
n , (TBC)

−jy
(N+1)
n cot

(
β

(i)
k ∆zN+1

)
, (TE, PECW)

jy
(N+1)
n tan

(
β

(i)
k ∆zN+1

)
, (TE, PMCW)

(11b)

3. OVERLAP INTEGRAL

To obtain numerical solutions, we need to convert CTMIE Eqs. (10a)–
(11a) into coupled matrix equations. First, the unknown 1-D
tangential field functions {Ei(x)} and {Hi(x)} are expanded as linear
combination of some known ortho-normal basis functions (for the
choice of these basis functions please see Ref. [16]). Consider the TM
case, let N

(i)
b be the number of terms used to expand to ith unknown

tangential field Hi(x), we write

Hi(x) ∼=
N

(i)
b∑

n=1

c(i)n φ(i)
n (x), i = 1, · · · , N. (12a)

Next let us define the overlap integral of the ith unknown function
Hi(x) and its adjacent slice modes in regions i− 1 and i.

Oī,j =
[
Oī,j

k,l

]
=

(
Oj,̄i

)T
, j = i, i + 1

Oī,j
k,l �

∫
φ

(i)
k (x)

1

ε
(j)
r (x)

φ
(i)
l (x)dx, (12b)
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Oj,̄i
k,l �

∫
φ

(i)
l (x)

1

ε
(j)
r (x)

φ
(i)
k (x) dx = Oī,j

k,l.

The bar on the superscript ī denotes the unknown transverse function
while the unbar superscript j = (i, i−1) denote the jth slice. Matrices
Oī,j , Oj,̄i are overlapped integral matrices. They are projection
matrices result from projecting one orthonormal basis functions onto
the other.

4. COUPLED MATRIX EQUATIONS

Using the previously defined overlap integral matrices, we then project
Green’s operators (in boldface roman font) in Eqs. (10a) and (11a) from
their natural bases (slice modes) onto our chosen bases. The results are
summarized in the following matrix representation of Green’s operators
(in boldface italic roman font).

Gi,i−1 · ci−1 + Gi,i · ci + Gi,i+1 · ci+1 = 0

Gi,i−1 = Oī,ip(i)Oi,i−1

Gi,i = Oī,ir(i)Oi,̄i −Oī,i+1q(i+1)Oi+1,i

Gi,i+1 = Oī,i+1s(i+1)Oi+1,i+1.

(12c)

Lower-case boldface literals pq r s are diagonal matrices given by

p(i) =



p
(i)
1 · · · 0
... p

(i)
k

...
0 · · · p

(i)
M


 , s(i) =



s
(i)
1 · · · 0
... s

(i)
k

...
0 · · · s

(i)
M


 ,

q(i) =



q
(i)
k · · · 0
... q

(i)
k

...
0 · · · q

(i)
M


 , r(i) =



r
(i)
k · · · 0
... r

(i)
k

...
0 · · · r

(i)
M


 ,

p
(i)
k = jη

(i)
k csc

(
β

(i)
k ∆zi

)
, s

(i)
k = −j η

(i)
k csc

(
β

(i)
k ∆zi

)
,

q
(i)
k = jη

(i)
k cot

(
β

(i)
k ∆zi

)
, r

(i)
k = −j η

(i)
k cot

(
β

(i)
k ∆zi

)
,

(12d)

Note that the original Green’s operators PQRS written in their
natural bases are diagonal (Eqs. (8a), (11c)); however the projected
matrix operators are in general dense and full except for the trivial
cases of identical slices. The unknowns here are lowercase boldface
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literals {ci} , i = 1, · · · , N . Final coupled matrix equations are


G1,1 G1,2 0 · · · 0
...

. . .
... · · · 0

0 Gi,i−1 Gi,i Gi,i+1 0
...

...
...

. . .
...

0 · · · 0 GN,N−1 GN,N







c1
...
ci
...

cN


 =




2b
...
0
...
0


 , (12e)

The definition of ci and the incident vector on the right hand side
b are given by

ci =



c
(i)
1
...

c
(i)
N


 , b =



b
(1)
1
...

b
(1)
N


 , bk =

β
(1)
i

ω

∫
φ

(1)
k (x)

1

ε
(1)
r

φ
(1)
i (x)dx. (12f)

In most cases, the incident mode is the fundamental mode (i = 1).
Once Eq. (12e) is solved for, the TM mode reflection and

transmission coefficients of the waveguide device can be obtained via
Eqs. (4c), (5a) and (12a) as

⇒ r′h �



r′h,1
...

r′h,M


 , r′h =O1,1̄ · c1, th �


 th,1

...
th,M


 , th = ON+1,N̄ · cN ,

(13a)

Similarly, coefficients for SNS in each region are given by

a(m) �



a

(m)
1
...

a
(m)
M


 , a(m) = Om,m−1 · cm−1, m = 2, · · · , N

b(m) �



b
(m)
1
...

b
(m)
M


 , b(m) = Om,m̄ · cm. m = 2, · · · , N.

(13b)

5. DISCUSSION

5.1. PECW/PMCW

In formulating CTMIE for 2-D dielectric waveguide devices we place
two perfectly electric/magnetic conducting walls on top and bottom of
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the structure. For waveguides with certain symmetry this is exactly
what we want so that we may reduce the domain of the problem and
cut down the computational costs. For open dielectric structures,
the use of PECWs becomes an approximation. For an unbounded
multi-layered waveguide, the modes are composed in terms of both
discrete guiding modes and continuous radiation modes [25, 26]. The
four P Q R S operators will be modified to include a summation term
for the discrete spectrum and an integral term (with the upper limit
extends to infinity) for the continuous spectrum. In theory we may do
so. However, we will end-up with a much more complex formulation
and an extremely difficult task of numerical implementation CTMIE
solution. To check for numerical convergence or to study the effects of
these two walls, we can either change the wall type or we can increase
the distance between two walls.

5.2. Comparison with the MMM (Mode Matching Method)

CTMIE is a generalization of MMM [20]. They both apply stair-case
approximation to the device under investigation. They both uses layer
mode of the slices. MMM’s unknowns are the coefficient vectors of slice
modes in each slice, whereas in CTMIE, unknowns are interfacial field
functions. The main difference is that MMM lacks the exact integral-
equation formulation and the consequential benefits of it [18, 26, 27].
For some given problems when the fields are concentrated near the core
region, CTMIE can choose some optimal expansion basis functions
for the unknown tangential fields Ey(x) and Hy(x) using very few
terms [18]. In essence, CTMIE uses far fewer unknowns than MMM
would to obtain the same field solutions.

5.3. Choosing N
(m)
b , M (m) Parameters

In addition to N , the number of slice interface, there are two sets of
important parameters in numerical solution of CTMIE namely N

(m)
b

and M (m). N
(m)
b is used in Eq. (12a) to denote the number of terms

used to expand the unknown field Hi(x). It is chosen to include all
discrete guiding modes and some discretized radiation modes. M (m) is
the number of layer modes used to represent the field solution in the
mth slice. Under MMM, these numbers must be set to be the same.

N
(m)
b = M (m) = M, m = 1, · · · , N + 1 (MMM). (14a)

The total unknowns are 2M ·N in mode matching method. In CTMIE
each N

(m)
b parameter can be independently chosen. The slice mode
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number M (m) is chosen to be several time larger than interface basis
number to have a good field match. Thus,

M (m), M (m+) � N
(m)
b m = 1, · · · , N. (CTMIE). (14b)

6. CONCLUSIONS

In this paper, we have constructed a rigorous CTMIE formulation to
study field solution of complex dielectric waveguide devices used in the
planar lightwave circuit. In this formulation, a series of vertical cuts
divide the waveguide device into a collection of dielectric slices made of
horizontal layered. Within each slice four Green’s kernels constructed
from TE (or TM) layer modes map the unknown y-directed electric (or
magnetic) field functions on the slice boundaries onto the x-component
magnetic (or electric field). The continuity of these x-directed EM
field component along each slice interface provide governing integral
equations for the unknown interfacial functions Ey(x) (or Hy(x)). To
solve the unknown functions, we construct sets of suitable expansion
functions and turn CTMIE into a coupled matrix equation which can
be solve by a direct method optimized for banded structure. We leave
the verification of our formulation as well as detail numerical discussion
in future papers.
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