行政院國家科學委員會補助專題研究計畫■成果報告

礦物組成對燃煤飛灰去除水中銅離子之影響

Effects of Fly Ash Mineral Composition on the Removal of Copper Ions from Aqueous Solution

計畫類別:■個別型計畫 □整合型計畫 計畫編號:NSC 91-2211-E-041-007 執行期限:91 年 8 月 1 日至 92 年 7 月 31 日

主持人:林健榮 嘉南藥理科技大學環境工程與科學系 副教授 共同主持人: 計畫參與人員:王怡敦

成果報告類型:(依經費核定清單規定繳交):■精簡報告□完整報告

本成果報告包括以下應繳交之附件: □赴國外出差或研習心得報告一份 □赴大陸地區出差或研習心得報告一份 □出席國際學術會議心得報告及發表之論文各一份 □國際合作研究計畫國外研究報告書一份

處理方式:除產學合作研究計畫、提昇產業技術及人才佩玉研究計畫、列 管計畫及下列情形者外,得立即公開查詢 □涉及專利或其他智慧財產權,□一年□二年後可公開查詢

執行單位:嘉南藥理科技大學環境工程與科學系

中華民國九十二年九月二十五日

一、中文摘要(關鍵詞:燃煤飛灰;礦 物組成;吸附;多元線性迴歸)

本研究以經 550℃脫碳處理後之 燃煤飛灰,探討飛灰中所含 SiO₂、 Al₂O₃、Fe₂O₃、CaO、MgO 及其它項 等礦物組成對其吸附去除水中銅離子 之影響。研究過程將溫吸附實驗結果 藉由多元線性迴歸統計分析,探討各 礦物組成對吸附水中銅離子之貢獻, 並建立不同礦物組成飛灰吸附水中銅 離子之單位吸附量預測模式。

研究結果發現,吸附實驗過程中 CaO 及 MgO 有少量被溶出之現象,而 飛灰中所含各礦物組成對吸附水中銅 離子之影響以 Fe2O3 及 SiO2 最為顯 著。此外,藉多元線性迴歸討論並建 立以40種不同礦物組成飛灰樣品於特 定吸附條件下吸附水中銅離子所獲得 之單位吸附量與不同礦物組成含量之 關係,發現不同礦物組成飛灰吸附水 中銅離子單位吸附量之預測模式為: $Y(mg-Cu^{2+}/g-fly ash) = 9.994 \times Fe_2O_3 +$ $0.673 \times SiO_2$, 其複判定係數 $R^2 =$ 0.908。此外,將飛灰各礦物組成含量 經開方變數轉換後,其所建立之預測 模式為: $Y(mg-Cu^{2+}/g-fly ash) =$ $(4.854 \times Fe_2O_3 + 0.857 \times SiO_2 +$ 0.989×Other+0.818×CaO)², 複判定 係數 R²=0.969, 顯示上述二模式對由 飛中礦物組成含量預測其對水中銅離 子單位吸附量有極高之解釋能力,本 研究所建立之預測模式可提供選擇燃 煤飛灰做為吸附劑之參考。

ニ、英文摘要: Abstract (Keywords: Coal fly ash; adsorption; mineral composition; multiple linear regression)

The fly ashes from coal-fired power plants were baked at 550° C for 24 hours to remove the carbon residue. The adsorption isotherm experiments were conducted to evaluate the specific adsorption capacity (SAC) of copper ions (mg-Cu²⁺/g-fly ash). Finally, the SAC prediction models of Cu²⁺ for the fly ashes with various minerals composition were developed by multiple liner regression, (MLR).

Research results demonstrate Fe₂O₃ and SiO₂ adsorb more copper ion from aqueous solution than others. Besides, the prediction model of specific adsorption capacity of copper ion is Y $(mg-Cu^{2+}/g-fly ash) = 9.994 \times Fe_2O_3 +$ 0.673×SiO₂. with coefficient of determination $R^2 = 0.908$. Another prediction model obtained through evolution transformation is: Y $(mg-Cu^{2+}/g-fly ash) = (4.854 \times Fe_2O_3 +$ +0.989×other 0.857×SiO₂ + $0.818 \times CaO)^2$, with coefficient of determination $R^2 = 0.969$. The prediction models developed in this study can be helpful for the selection of coal fly ash as the adsorbent of heavy metals from aqueous solution.

三、報告內容 3.1 前言

燃煤飛灰是燃煤火力發電廠之主 要副產物。隨著國人用電須求急速攀 升,燃煤飛灰之產生量勢必逐年增 加,以往將飛灰應用為混凝土掺料、 路基舗築、築堤填地及農業利用等再 利用方式,必將無法有效紓解飛灰處 理處置之問題,而灰塘填海或將之視 為廢棄物予以棄置亦不符資源再利用 之精神。因此,將顆粒細緻而具有較 大比表面積特性之燃煤飛灰應用作為 廢水處理吸附材,不僅可以廢減廢, 更可有效解決燃煤飛灰處理處置的問 題。

3.2 研究目的

本研究利用經脫碳處理後之飛灰 為吸附劑,於特定條件下與水中銅離 子進行恒溫吸附反應,藉由多元線性 迴歸分析釐清飛灰中各礦物組成對水 中銅離子單位吸附量之貢獻,並建立 以飛灰之礦物組成預測其對水中銅離 子單位吸附量之預測模式。

3.3 文獻探討

燃煤飛灰應用於環境污染物之管 制上,可有效吸附去除廢水、廢氣中 各種有機及無機污染物。然因其燃煤 飛灰之物理化學特性受煤碳種類、燃 燒條件及集塵方式之影響甚大,致應 用飛灰吸附/去除水中污染物之效果 差異頗大。

申請人過去針對燃煤飛灰未燃碳 含量對有關飛灰吸附去除水中2-氯酚 及 Cu(Ⅱ)之行為進行一系列相關研 究,研究成果已發表於 Chemosohere 等期刊,研究發現飛灰中碳含量影響 飛灰之比表面積大小甚鉅,碳含量每 增加 1%,比表面積增加 0.6 m2;故碳 含量多寡為影響飛灰吸附水中 Cu(Ⅱ) 及之 2-氯酚重要影響因子。

然而,飛灰中礦物組成特性受煤源種

類影響而不同,且不同金屬氧化物具 不同之水化表面特性,對水中有機/無 機污染物可能具不同之吸附能力,有 關飛灰中礦物組成特性對其去除水中 有機/無機污染物之影響,尚待進一步 討論。

3.4 研究方法

1. 吸附劑製備:

燃煤飛灰經 550℃高溫鍛燒 24 小 時以去除飛灰中之未燃碳,並經球磨 機混拌均勻。實驗過程所使用作為吸 附劑之燃煤飛灰共 40 種,茲分類說明 如下:

- (1)實驗室製備飛灰:為分別取不 同煤碳樣品共13種,於實驗室 中經破碎、鍛燒、再經球磨混 勻製備而成。
- (2)實廠飛灰:赴實廠取回之不同 飛灰樣品共18種,經鍛燒後再 經球磨積混合均勻。
- (3) 攙配飛灰:係取不同實廠飛灰 依 1:1 比例,以配製成不同礦物 組成含量為原則進行攙配,經 球磨積混勻而製成。

2. 吸附反應之平衡時間:

於 150mL PE 瓶中加入 1.0g 飛 灰,再分別加入 0.2M 硝酸鈉溶液 50mL 及 127mg/L 之 Cu (II) 50mL,於 25°C 條件下恒溫振盪,進行已飛灰吸附銅 離子之恆溫吸附實驗。實驗過程中每 15 分鐘以硝酸控制調整溶液之 pH=5 ± 0.1,以避免因飛灰中鹼性成分釋出形 成 Cu(OH)₂ 沉澱,再於特定時間(30、 60、90、120、150 及 180 分鐘)將吸附 反應溶液取下,經 0.45 μ m 濾紙過濾進 行固液分離,所得濾液以原子吸收光 譜儀分析殘留 Cu²⁺濃度,最後由濾液 中 Cu²⁺濃度與吸附反應時間之關係, 評估吸附反應所需平衡時間。

3. 吸附劑添加量對吸附反應的影響

分別添加 0.5、1.0、1.5、2.0 及 2.5g 不同礦物組成之飛灰於由 0.2M 50mL 硝酸鈉溶液及 127 mg/L 50mL 硝酸銅 溶液所混合之溶液中,參照前節實驗 步驟調整 pH,吸附反應時間採用三小 時,吸附反應完成後以 0.45µm 濾紙進 行固液分離,所得濾液以原子吸收光 譜儀分析濾液中殘留 Cu²⁺濃度。

上述實驗中,原子吸收光譜儀之 分析之檢量線相關係數須大於 0.995, 每一吸附反應皆進行重覆分析,實驗 過程設定之最大容許偏差為 5%,當任 一實驗結果超出前述設定之管制標準 時,則放棄該組實驗數據,並重新進 行另一組實驗,直至實驗結果符合品 管要求

3.5、結論與討論

- 飛灰中之礦物組成以二氧化矽 (SiO₂)、氧化鋁(Al₂O₃)、氧化鐵 (Fe₂O₃)為主要成份。
- 於 pH=5.0 ± 0.1,25℃恒溫條件下 進行飛灰吸附水中銅離子吸附平 衡時間實驗,發現在放入吸附質 30 分鐘內吸附反應即漸趨於平衡穩 定(詳如圖1及圖2)。
- 3. 吸附反應後溶液中殘留之 Cu²⁺濃度隨著不同礦物組成燃煤飛灰添加量增加而逐漸降低(詳如圖 3 及圖 4),而實驗條件下不同礦物組成 飛灰對水中銅離子之單位吸附量為 0.12~1.87 mg Cu²⁺/g fly ash,平均單位吸附量為 1.07 mg Cu²⁺/g fly ash。

- 吸附反應過程發現 CaO 及 MgO 皆 發現有溶出之現象,且溶出量與飛 灰中含量略呈正比之關係(詳如圖 5 及圖 6)。另外,CaO 及 MgO 平 均溶出率分別為 43.0%及 10.3%
- 5. 以飛灰之礦物組成為自變數,飛灰 對水中銅離子之單位吸附量為因 變數,藉由多元線性迴歸分析建立 飛灰礦物組成對水中銅離子單位 吸附量之預測模式為 $Y(mg-Cu^{2+}/g-fly ash) = 9.994 \times Fe_2O_3$ $+0.673 \times SiO_2$, 複判定係數 R²= 0.908。此外,將飛灰對水中銅離子 之單位吸附量進行開方轉換後,再 進行多元線性迴歸分析可獲致較 佳之預測模式如下: $Y(mg-Cu^{2+}/g-fly)$ ash) = $(4.854 \times Fe_2O_3 + 0.857 \times SiO_2 +$ 0.989×Other+0.818×CaO)²,其複 判定係數 $R^2 = 0.969$, 且驗證之最 大百分差異為 129.66%。
- 6. 由迴歸分析結果發現,Fe₂O₃及 SiO₂ 含量對吸附水中銅離子之影 響最為顯著,其中 Fe₂O₃之前置係 數遠大於其它礦物組成之前置係 數,推測可能原因為 Fe₂O₃具較大 表面積而能提供較多吸附位址所 致。

3.6、參考文獻

REFERENCES

- Mark R. Schure., Pat. Soltys., David F.S. Natusch., and Thad Mauney., "Surface Area and Porosity of Coal Fly Ash", Fuel, 78, pp.215~223, 1999.
- 2. Henry A. Foner., Thomas L. Robl., James C. Hower., and Uschi M.

Graham., "Characterization of fly ash from Israel with reference to its possible utilization", Fuel, 78, pp.215~223, 1999.

- Oktay Bayat., "Characterization of Turkish fly ashes", Fuel, Vol. 77, No.9/10, pp. 1056~1066, 1998.
- M. Frías and M.I. Sánchez de Rojas, "Microstructural in Fly Ash Mortars: Study on Phenomena Affecting Particle and Pore Size", Cement and Concrete Research, Vol.27, No.4, pp.619~628, 1997.
- 林健榮,張祖恩,"碳含量對燃煤 飛灰吸附去除水中二氯酚之影 響",第25屆廢水處理研討會論文 集,pp.779~783,2000。
- Chien-Jung Lin., and Juu-En Chang., "Effect of fly ash characteristics on the removal of Cu(II) from aqueous solution", Chemosphere, 44, pp.1185 ~1192,2001.
- Julia Ayala., Francisco Blanco., Purificación Garcia., Penelope Rodriguez., and José Sancho.," Asturian fly ash as a heavy metals removal material", Fuel, Vol.77, No.11, pp.1147~1154, 1998.
- V. Héquet., P. Ricou., I. Lecuyer., and P. Le Cloriec., "Removal of Cu²⁺ and Zn²⁺ in aqueous solutions by sorption onto mixed fly ash", Fuel, 80, pp.851~856, 2001.
- K. G. Karthikeyan., Herschel A. Elliott., and Jon Chorover., "Role of Surface Precipitation in Copper Sorption by the Hydrous Oxides of Iron and Aluminum", Journal of

Colloid and Interface Science, 209, pp.72~79, 1999.

- Jimmy C. Yu., Zi-Tao Jiang., Ho-Yan Liu., and Jiaguo Yu., "Influence of solvation interactions on the zeta potential of titania powders", Journal of Colloid and Interface Science, 262, pp.97~100, 2003.
- 11. Schindler. P.W., Surface Complexes at Oxide Water Interfaces. In "adsorption of Inorganics at Solid Liquid Interfaces", Ann Arbor Science., Ann Arbor, Mich., pp.1~49, 1981 •
- S. Mustafa., B. Dilara., A. Naeem., and P. Shahida., "Surface properties of the mixed oxides of iron and silica", Colloids and Surfaces, 205, pp.273~282, 2002.
- Para. Trivedi., and Lisa. Axe., "A Comparison Strontium Sorption to Hydrous Aluminum, Iron and Manganese Oxides", Colloids and Surfaces Science, 218, pp.554~563, 1999.
- 14. Kathleen C. Swallow., David N. Hume., and Francoi M. Morel., "Sorption of copper and Lead by Hdrous Ferric Oxide", Environmental Science & Technology, Vol.14, No.11, pp.1326~1331, 1980.
- Hiroki Tamura., Kenya Mita., Akio Tanaka., and Makoto Ito., "Mechanism of Hydroxylation of Metal Oxide Surfaces", Journal of Colloid and Interface Science, 243, pp.202~207, 2001.

3.7、附件(附圖 1~附圖 6)

圖1實驗室製備飛灰吸附水中 CuⅡ所 需平衡時間

圖2實廠飛灰吸附水中CuII所需平衡時間

圖 3 實驗室製備飛灰添加量對吸附質 濃度 (mg-Cu²⁺/L) 變化之情形

圖 4 實廠飛灰添加量對吸附質濃度 (mg-Cu²⁺/L) 變化之情形

圖 5 飛灰及濾液中溶出 CaO 含量比較

圖 6 飛灰及濾液中溶出 MgO 含量比較

計畫成果自評

本計畫共完成下列成果:

- 1. 建立飛灰之物、化特性分析。
- 了解飛灰吸附水中銅離子之恒溫
 吸附實驗所需反應平衡時間。
- 進行恆溫吸附實驗時發現飛灰中 部份之 CaO 及 MgO 有溶出之現 象。

- 飛灰中不同礦物組成將影響其對 水中銅離子 Cu²⁺之單位吸附量。
- 建立飛灰吸附 Cu²⁺之單位吸附量 與飛灰礦物組成預測 Cu²⁺單位吸 附量之模式。
- 將飛灰吸附 Cu²⁺之單位吸附量經
 開方轉換後,獲致最佳多元線性迴
 歸預測模式。
- 7. 藉由多元線性迴歸分析釐清飛灰 中各礦物組成對吸附水中銅離子 之影響。

本研究內容與原計畫完全相符, 除已達成計畫目標外,另外並發現飛 灰中所含鈣及鎂等金屬氧化物於吸附 過程之溶出現象與測定其溶出比率, 進行相關多元線性回歸時,其自變數 中之矽鋁鈣鎂鐵等金屬氧化物之礦物 組成含量應依測定結果進行扣除修 正,方可獲致較佳之迴歸結果。本研 究成果可作為篩選據較佳吸附效果 (含鐵、矽較高)之飛灰應用作為廢 水處理吸附劑之依據;另外,本研究 所發展之銅離子單位吸附量預測模式 可應用作為後續相關工程設計及操作 管理之參考。本研究之主要成果預定 於整理投稿於 Chemosphere 期刊,另 外,本研究重要發現將結合申請人近 年進行之應用燃煤飛灰吸附去除水中 污染物之研究結果有關未燃碳之影 響,整體探討未燃碳、不同金屬氧化 物之貢獻,並將成果發表於國際學術 期刊。