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Some results for testing two nonnested normal linear models
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Let the true normal linear model be given by
Y=q+e, e~N0,s"l) iA

and let the two competing models be referred

to as:

Moded A §GY =q, +e, g, 1 Q,.
and

Model B §GY =q,+e, gz 1 Q;.
If the above are two nonnested normal linear
models, i.e, Q,CQ;* Q, and
QA CQg* Qp.here Q, CQg * Q, and
Q,CQz*Q;.Snce Q,and Q, may
overlap, After using orthogonal
decomposition to remove the overlap
subspace, model A becomes:

Y.s=h,+e, h, T L,;
model B becomes :
YA+B :hB te, hBT LB’

hereL, and L; represent the model parameter
spaces after the overlap subspace has been
removed for model A and model B
respectively, L, and L; only intersects at the
origin  point, i.e, L,CL,={0};y,..s
represents the projection of the sample
observation vector y onto the combined
parameter spacel, A L. Note that the true

variance is assumed to be the same as the
variance under the candidate models and the
true model, for easy sake, it will be taken as 1.
Also the symmetric coordinate system for
L,AL,, suggested in Efron (1984), is
adopted below. Let d, and d, represent
the dimensions of L, and L; respectively,
decompose L, into d, orthogonal one

dimensional spaces, L,, L,,.., and a
smilar decomposition of L; into dg
orthogonal one dimensional spaces, L ,
L 5.-.- Notethat L, isorthogonal to Ly for
it jand, L, and L is the ith pair of the
canonical variables.

Three factors were varied in the Monte Carlo
simulations, the first factor is the length of the
mean vector, which is | ;the second factor is
the angle between L, and L;,whichis a ;the

third factor is the degrees of freedom of the
common error terms j Awhich is p.. The
length | steps from O to 8 by increment 0.4,
the angle a steps among %@% and

%, p: steps among 5,10,20 and 50. The

data Y,,; weregenerated by adding the error
terms e to the true mean vector h . The

n” lerror terms are randomly independently
generated 10000 times from the standard
normal distributions and were stored in an
n” 10000 matrix, they were used repeatly in
each step for the reason of eliminating the
effects of variation from the error terms while

doing the comparisons.
Assume h is uniformly generated from

the d, +d; dimensiona sphere. To select

among two candidate models, the ratio of the
squared lengths of the projection of y onto

the space corresponding to the violation of
the two models are computed, the selection
rule can be written as

Pyl el

2 2 1
”y B ” + ”yE”
Here y. represents the projection of vy

if

onto the error space and
Yas=Ya TYa=Ye tYs
is the orthogonal decompositions.
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||yBA ” +||yE||
here the numerator of W follows the
noncentral  chi-square distribution  with
d,+p. degrees of freedom and noncentrality

parameter ||h K ||2,the denominator of W

follows the noncentral chi-square distribution
with d,+p. degrees of freedom and

noncentrality parameter”h o ||2and they are
dependent unless Q," Q,. Suppose W is
generated from the unknown population
distribution F, since the structure of F is

completely  unknown, the  empiricd

distribution  functionF will replace the
unknown F. Consider the case when d, =1

and d; =2, let a represent the angle
between L, and Lg, for fixed p., a and
| ,the mean vector h is uniformly generated

100 times from the combined parameter
spaces, the data is generated by adding some
error terms e, e ~ N(0,1), to each of the
mean vector, and they are replicated 10000
times. It will be interesting to see how the
probability P(select A) = P(W <c,)

depends on h for some fixed c, values.
Especially to see how such probability
depends onfh .- |, |*, which is the

difference in the discrepancies due to
approximation of model A and model B to the
true operating model (Linhart and Zucchini
(1986)). Note that negative such
measurement indicate model A has less
discrepancy due to approximation than model
B, thus, negative region denotes A better
region. Positive such measurement indicates
model A has more discrepancy due to
approximation than model B, thus postive

region denotes B better region. If such
measurement is zero, it indicates both models
representing the true operating model equally
well. Thisisthe region that model A fits same
as model B. Using such methodology for
defining the better fitting is same as using the
Kullback-leibler information number for
measuring the discrepancy about the true

model and the competing models. Let
f,(ylq,) denote the likelihood p.d.f. of

model A, f;(y|gz) denote the likelihood

p.d.f. of model B. the Kullback-leibler

information number of model A is less than

the number of model B

iff E[log f,(y[q.)] > Ellog f5(y|ag)]
it Ja - aa” <la- asf

From the simulation results, some phenomena

can be observed.

(1) The probability of selecting model A
versus the quantity |, ||2 b, ||2 is
nonincreasing, for any p., a and I, it
shows that when the signed magnitude of
I Hz - by ||dets bigger, which means

when the mean vector gets closer to
model B than model A, the probability
P(select A) isnonincreasing.

(2) To seetheeffect of I, for fixed p. and
a, the plots of P(sdect A) versus

||h K ||2 - "1 o ||2for different value of

| show that when | is very small, the
difference of the distances from L, and

L; is small too, thus no matter the mean
is closer to Lyor L, the
probability of selecting A remains about

the same. When | increases, the selecting
problem is easier since y will tend to

Vector

belong to the region for selecting model A



or y will tend to belong to the region for

selecting model B, therefore,
P(select A) increases on A better region

and decreases on B better region. For
lage |,  when ||hAA ||2 << ||hBA ||2
P(select A) is approximately to be 1 and
when  |h, ||2 >> |, ||2 P(sdlect A) is
approximately to be O.

3 For fixed |y,.|" . |vo | and [ye|’,
the selection rule can be written as: Select
Ay [ el [+ a- elyel <o

The left hand side of this above equationis
a decreasing function of c,, therefore, a

large value of c, will give a higher
probability of selecting model A.

(4) To see the effect of p., for fixed | and

the selection rule
o l'< ye
of which does not cooperate the
lyc| term. Thus, &l the plots are

a, when c=1,
becomes :Select A if

essentially the same with respect to
different p.. But when c,>1, since c;

is the pendty that been put on the
projection of y onto the violation space

of model B to increase the probability of
selecting model A, as c, increases,
P(select A) increases, too. When c;

value changes from 1 to higher than 1, the
probability P(select A) has  bigger

changing. For example, when a :%,
=1 and p. =40, when c,=1, the range

of the probahility is from 0.15 to 0.3, but
when c,=1.1, such range jumps to 0.82

to 0.95. In this case, the probability isvery
sengitive about the c; value. For fixed

Iy, [, [yo|” ad c>1, the selection

rule is equivalent to

N N
c -1

) -

<lvel’,

Therefore, as p. tends to infinity,
lye[’will  tend to  p., and

P(select A) will increase. Also, for fixed
c,>1, P(select A) increasesby p..

(5) In most of the applied problems, asimpler

model is preferred. If thisis the case, since
al the plotsindicate that P(select A) is
"1 . ||2 there
exists one specia ¢, value, say ¢, such
that P(select A) = P(W <c,) isat least
0.5when |h, ||2 £h, ||2 . Whenever
using another c,> ¢, value, thereisa
trade in the probabilities, that is,

P(select A) increasesin A better region,
but P(select A) also increasesin B better
region. When d, =1 and d; =1, there
existsa c; =1, such that no matter what
p:, | or a are, the probability of

. 2
decreasing versus ||h K || -

selecting model A is
i>0.5when||h I <lh, ||2 .".J

=oswhen b, ["=h,.['y.

{<osuten |, [, [[]

P(W < 1)

When chose another c,> ¢, =1,

P(select A) increasesin A better region,
but it also increases in B better region.
When d, =1 and d; =2, the ¢, canbe
affected by several factors: p., land a .
The goal isto look for the minimum ¢,
value such that when model A fits better
than or equally to model B, the probahility
of selecting A isat least 0.5. But when
|- Iy | isfixed, the computer



results show that the probability

P(select A) isnot constant, the location
of the mean vector actually causes a small
difference in the probability. For example,
when systematically generating 100

vectors on the three dimensional combined
parameter space L, A L sphere with

same distance away from L, and L; space,
it shows that for these points, most of the
time, P(select A) hasafixed pattern,
which has minimum occurs at the point

(Icos%,lsin%,@ . Thus, this vector will be

called “the least favorable point” among
those vectors satisfying |, ||2 £, ||2

and having the minimum probability of
selecting A. We will look forward a
special ¢, value, say ¢, such that
P(select A) is0.5 at this point, then using
this ¢, , the probability P(select A) will
at least 0.5 for al of the points
sﬁtisfying”h K ||2 £ ‘h & ||2 . To see how the
c, isaffected by pg, | and a, 10000
replications were simulated for each of the
following steps. The length | was varied
from O to 8 with 50 steps in between, the
angle was varied among

%,Zpé,@%and % p. was shown 5

to 30 by increment 5. Several phenomena
can be observed from the simulation
results.

(& For fixed p., when a

remains amost constant no matter how
large | is. But for large angle a, c;

is smal, c

decreasesby |. Thereasoniswhen a is
small, letting al points in the A better or
equally better region to select A with at
least probability 0.5 is not easy even | is

large, since “the least favorable point” is
half way between L,and L;, which is
very closeto each other when a issmall,
thus, the penalty remains about the same
even when | is large. But when a is
large, then as | increases, it is more and
more easier to let “the least favorable

point” tend to select A, thus, the penalty
c, value decreases.

(b) When | and a are fixed, c, decreases
by pg, since the larger the sample sizes
is, the more eadier to tell which of the
model should be chosen, thus, c, value

decreases.

(c) When p. isredly large, ¢, stays stable
for 1 £3, and for 1>3, the ¢; has a
lightly changing in the value, with larger
angle a causing smaller c; value.

One example was illustrated to explain the
use of c¢,. When d,=1 ,d,=2 and
a= % (which means the correlation between

the first pair of the canonica variables is
cofy), to choose a stitable ¢ value for

which P(select A) is at least 0.5 when A
actually fits better than B, when p. is10, the
c, value chosen to be used is about 1.18 with

minor difference according to the length 1,
and when p. is 20, the c, value chosen to

be used is about 1.09 with minor difference

according to the length |. Choosing any
vaue c, bigger than c¢; will cause selecting

model A more and selecting model B less.
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