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Some results for testing two nonnested normal linear models
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°µ¿ï¾Ü®É¡A¦pªG¦¹̈âÓ¼Ò¦¡¬°±_¦¡¡A§ÚÌ
¥i¥H¥ÎF ÀË©ẅ Ó°µ̈Mµ¦¡A¦P®É¦³ÃöF ÀË©w
ªº°Q½×»P¬ã̈s«D±`́ ¶¹M¥i±o. ¦ý¬OY³ö â
Ó¼Ò¦¡¬°«D±_¦¡¡A¦pªG¥HÃþ¦üFÀË©wªºÆ[
©À̈Ó±°́QÆ[¹îÈy¸©̈ó̈âÓ¼Ò¦¡ªÅ¶¡¥H¥~
ªø«×¥¤èªº¤ñ²v®É¡A«h¦¹¤ñ²v¤¤ªº¤À¤l¤Î
¤À¥À¬°̈ã¬Ȳ S©w¦Û¥Ñ«×¤Î¤¤¥¡È°Ñ¼Æªº
«D¤¤¥¡¥d¤è¤À°t¡A¦Ó¥B°£«D̈ âÓ¼Ò¦¡ªÅ¶¡
ª½¥æ§_«h¬°¬Û̈Ìªº±¡§Î. ¦b¥»p¹º¤¤¥H¹q
¸£̈Ó¼ÒÀÀ²£¥Í¦¹¤ñ²vªº̧gÅç¤À°t¡A ¨Ã¥B
±°́Q³oºØÀË©wªk«h©MÆ[¹îÈ¼Ë¥»¼Æ¥Ø¡B̄ u
¥¿́Á±æÈ¦V¶qªºªø«×¡B̈ âÓ¼Ò¦¡́Á±æÈ¦V
¶q¤§¶¡ªº̈¤«×¥H¤Î̈ä¥L¥ī à¼vÅT¿ï¾Üµ²
ªG¦]̄ À¤§¶¡ªºÃö«Y.

ÃöÁäµü¡G«D¤¤¥¡¥d¤è¤À°t¡BFÀË©w¡B «D±_
¦¡.

Abstract

To select among two competing normal
linear models, if they are nested, the usual F
test can be used, also the behaviors of the F
test are available. If  the two models are
nonnested, adopt similar idea by considering
the ratio of the squared lengths of the
projection of the observations y  onto the

space corresponding to the violation of the
two models, the numerator and the
denominator of this ratio follow  the

noncentral chi-square distribution with some
specific degrees of freedom and noncentrality
parameter and they are dependent unless the
model spaces are orthogonal. In this research,
I explore the empirical structure of the
unknown population which generates the ratio
and also explore how the selection rule
depends on the number of the observations
y¡B the length of the true mean vector¡B the

angle between the two model mean vectors
and other affecting factors.

    Keywords¡G noncentral chi-square ,

F test, nonnested.
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®t²§ªº¤èªk¡Ä Ã¥B¥H¹q̧ £̈Ó¼ÒÀÀµû¦ô¡F
Fraser ©MGebotys(1987) «h«ØÄ³¤@ºØ±ø¥ó
¦¡ªº¤ņ̃û̄u¥¿́Á±æÈ¦V¶q̧ ©̈ó̈âÓ¼Ò¦¡
ªÅ¶¡ªº̈¤«×¤§¤èªk¡C¦b¥»pµe¤¤¥HÃþ¦ü¹B
¥Î©ó±_¦¡±º̀A½u©Ê¼Ò¦¡¿ï¾ÜªºFÀË©w¤èªk
¨Ó±°́Q¤@ºØ¥i¥H¹B¥Î©ó«D±_¦¡±º̀A½u©Ê
¼Ò¦¡¿ï¾ÜªºÀË©w¤èªk¡A¦P®ÉÂÇ§U¹q̧ £ªº»²
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«×¡B̈ âÓ¼Ò¦¡́Á±æÈ¦V¶q¤§¶¡ªº̈¤«×¡B… ..
µ¥µ¥ªºÃö«Y.

¤T¡B¬ã̈sµ²ªG

Let the true normal linear model be given by
Y = +θ ε , ( )ε σ~ ,N I0 2 ¡A

and let the two competing models be referred
to as:

Model A ¡G Y = +θ εA , θ A ∈Θ A .

and
Model B ¡G Y = +θ εB , θ B B∈Θ .

If the above are two nonnested normal linear
models, i.e., Θ Θ ΘA B A∩ ≠  and
Θ Θ ΘA B B∩ ≠ , here Θ Θ ΘA B A∩ ≠  and
Θ Θ ΘA B B∩ ≠ . Since AΘ  and BΘ  may

overlap, After using orthogonal
decomposition to remove the overlap
subspace, model A becomes:

εη +=+ ABAY , AL∈Aη ;

model B becomes :
εη +=+ BBAY , BB L∈η ,

here  AL and BL  represent the model parameter

spaces after the overlap subspace has been
removed for model A and model B
respectively,  AL  and BL  only intersects at the
origin point, i.e., { }0=∩ BA LL ; BAy +

represents the projection of the sample
observation vector y  onto the combined
parameter space BA LL ⊕ . Note that the true

variance is assumed to be the same as the
variance under the candidate models and the
true model, for easy sake, it will be taken as 1.
Also the symmetric coordinate system for

BA LL ⊕ , suggested in Efron (1984), is
adopted below. Let Ad  and Bd  represent
the dimensions of  AL  and BL  respectively,
decompose  AL  into Ad  orthogonal one

dimensional spaces,  1AL ,  2AL ,… , and a
similar decomposition of  BL  into Bd
orthogonal one dimensional spaces,  1BL ,

 2BL ,… . Note that  AiL is orthogonal to  BjL for

ji ≠ and,  AiL  and  BiL is the ith pair of the

canonical variables.
Three factors were varied in the Monte Carlo
simulations, the first factor is the length of the
mean vector, which is l ;the second factor is
the angle between  AL and BL ,which is α ; the

third factor is the degrees of freedom of the
common error terms¡A which is Ep . The

length l  steps from 0 to 8 by increment 0.4,
the angle α  steps among 8

π , 8
3π  and

2
π , Ep  steps among 5,10,20 and 50. The

data BAY +  were generated by adding the error
terms ε  to the true mean vector η . The

1×n error terms are randomly independently
generated 10000 times from the standard
normal distributions and were stored in an

10000×n  matrix, they were used repeatly in
each step for the reason of eliminating the
effects of variation from the error terms while
doing the comparisons.

Assume η is uniformly generated from

the BA dd +  dimensional sphere. To select

among two candidate models, the ratio of the
squared lengths of the projection of y  onto

the space corresponding to the violation of
the two models are computed, the selection
rule can be written as

Select A  if ,12
E

2

B

2
E

2

cA <
+

+

⊥

⊥

yy

yy

Here Ey  represents the projection of  y

onto the error space and
BA+y = ⊥A

y + Ay = ⊥B
y + By

is the orthogonal decompositions.
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 Let ,
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W
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⊥
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here the numerator of W  follows the
noncentral chi-square distribution with

EB pd +  degrees of freedom and noncentrality

parameter 
2

A⊥η ,the denominator of W

follows the noncentral chi-square distribution
with EA pd +  degrees of freedom and

noncentrality parameter
2

B⊥η and  they are

dependent unless Θ ΘA B  ⊥ . Suppose W  is

generated from the unknown population
distribution F , since the structure of F  is
completely unknown, the empirical
distribution function F̂ will replace the
unknown F. Consider the case when 1=Ad
and 2=Bd , let α  represent the angle
between  1AL  and 1BL , for fixed Ep , α  and
l  ,the mean vector η is uniformly generated

100 times from the combined parameter
spaces, the data is generated by adding some
error terms ε , ( )IN ,0~ε , to each of the

mean vector, and they are replicated 10000
times. It will be interesting to see how the
probability  )c() ( 1<= WPAselectP
depends on η for some fixed 1c  values.

Especially to see how such probability

depends on
22

⊥⊥ −
BA

ηη , which is the

difference in the discrepancies due to
approximation of model A and model B to the
true operating model (Linhart and Zucchini
(1986)). Note that negative such
measurement indicate model A has less
discrepancy due to approximation than model
B, thus, negative region denotes A better
region. Positive such measurement indicates
model A has more discrepancy due to
approximation than model B, thus positive

region denotes B better region. If such
measurement is zero, it indicates both models
representing the true operating model equally
well. This is the region that model A fits same
as model B. Using such methodology for
defining the better fitting is same as using the
Kullback-leibler information number for
measuring the discrepancy about the true
model and the competing models. Let

)|( AAf θy  denote the likelihood p.d.f. of
model A, )|( BBf θy  denote the likelihood

p.d.f. of model B. the Kullback-leibler
information number of model A is less than
the number of model B

)]|( E[log  iff AAf θy  > )]|( E[log  BθyBf
22  iff BA θθθθ −<−

From the simulation results, some phenomena
can be observed.
(1) The probability of selecting model A

versus the quantity 
22

⊥⊥ −
BA

ηη  is

nonincreasing, for any Ep , α  and l , it

shows that when the signed magnitude of
22

⊥⊥ −
BA

ηη gets bigger, which means

when the mean vector gets closer to
model B than model A, the probability

 ) ( AselectP is nonincreasing.
(2) To see the effect of l , for fixed  Ep  and

α , the plots of  ) ( AselectP versus
22

⊥⊥ −
BA

ηη for different value of

l show that when l  is very small, the
difference of the distances from  AL and

BL  is small too, thus no matter the mean
vector is closer to  AL or BL , the

probability of selecting A remains about
the same. When l  increases, the selecting
problem is easier since y  will tend to

belong to the region for selecting model A
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or y  will tend to belong to the region for

selecting model B, therefore,
 ) ( AselectP increases on A better region

and decreases on B better region. For

large l , when 
22

⊥⊥ <<
BA

ηη ,

 ) ( AselectP is approximately to be 1 and

when 
22

⊥⊥ >>
BA

ηη ,  ) ( AselectP is

approximately to be 0.

(3)  For fixed 
2

A⊥y  , 
2

B⊥y  and 2
Ey ,

the selection rule can be written as: Select

A if 
2

A⊥y -
2

B1 ⊥yc + 2
1 )1( Ec y− <0.

The left hand side of this above equation is
a decreasing function of 1c , therefore, a
large value of 1c  will give a higher

probability of selecting model A.
(4) To see the effect of Ep , for fixed l  and

α , when 1c =1, the selection rule

becomes :Select A  if  
2

A⊥y < 
2

B⊥y ,

of which does not cooperate the
2

Ey term. Thus, all the plots are

essentially the same with respect to
different Ep . But when 1c >1, since 1c

is the penalty that been put on the
projection of y  onto the violation space

of model B to increase the probability of
selecting model A, as 1c  increases,

 ) ( AselectP increases, too. When 1c

value changes from 1 to higher than 1, the
probability  ) ( AselectP has bigger

changing. For example, when 8
πα = ,

l =1 and Ep =40, when 1c =1, the range

of the probability is from 0.15 to 0.3, but
when 1c =1.1, such range jumps to 0.82

to 0.95. In this case, the probability is very
sensitive about the 1c  value. For fixed

2

A⊥y , 
2

B⊥y  and 1c >1, the selection

rule is equivalent to

Select A if ,
1

2
E

1

2

B1

2

y
yy

<
−

− ⊥⊥

c

c
A

Therefore, as Ep  tends to infinity,
2

Ey will tend to Ep , and

 ) ( AselectP will increase. Also, for fixed

1c >1,  ) ( AselectP increases by Ep .

(5) In most of the applied problems, a simpler
model is preferred. If this is the case, since
all the plots indicate that  ) ( AselectP is

decreasing versus 
22

⊥⊥ −
BA

ηη , there

exists one special 1c  value, say *
1c , such

that  )c() ( *
1<= WPAselectP is at least

0.5 when 
22

⊥⊥ ≤
BA

ηη . Whenever

using another '
1c > *

1c  value, there is a

trade in the probabilities, that is,
 ) ( AselectP increases in A better region,

but  ) ( AselectP also increases in B better
region. When 1=Ad  and 1=Bd , there
exists a *

1c =1, such that no matter what

Ep , l  or α  are, the probability of

selecting model A is

.
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When chose another '
1c > *

1c =1,
 ) ( AselectP increases in A better region,

but it also increases in B better region.
When 1=Ad  and 2=Bd , the *

1c  can be
affected by several factors: Ep , l and α .
The goal is to look for the minimum 1c

value such that when model A fits better
than or equally to model B, the probability
of selecting A is at least 0.5. But when

22
⊥⊥ −

BA
ηη  is fixed, the computer
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results show that the probability
 ) ( AselectP is not constant, the location

of the mean vector actually causes a small
difference in the probability. For example,
when systematically generating 100
vectors on the three dimensional combined
parameter space BA LL ⊕ sphere with
same distance away from  AL and BL  space,

it shows that for these points, most of the
time,  ) ( AselectP has a fixed pattern,

which has minimum occurs at the point

)0,
 2

sin   ,
2

 cos (
αα

ll  . Thus, this vector will be

called “the least favorable point” among

those vectors satisfying 
22

⊥⊥ ≤
BA

ηη

and having the minimum probability of
selecting A. We will look forward a
special 1c  value, say *

1c , such that
 ) ( AselectP is 0.5 at this point, then using

this *
1c , the probability  ) ( AselectP will

at least 0.5 for all of the points

satisfying
22

⊥⊥ ≤
BA

ηη . To see how the
*
1c  is affected by Ep , l  and α , 10000

replications were simulated for each of the
following steps. The length l  was varied
from 0 to 8 with 50 steps in between, the
angle was varied among

8
π , 8

2π , 8
3π and 2

π , Ep  was shown 5

to 30 by increment 5. Several phenomena
can be observed from the simulation
results.

(a) For fixed Ep , when α  is small, *
1c

remains almost constant no matter how
large l  is. But for large angle α , *

1c

decreases by l . The reason is when α  is
small, letting all points in the A better or
equally better region to select A with at
least probability 0.5 is not easy even l  is

large, since “the least favorable point” is
half way between  AL and BL , which is

very close to each other when α  is small,
thus, the penalty remains about the same
even when l  is large. But when α  is
large, then as l  increases, it is more and
more easier to let “the least favorable
point” tend to select A, thus, the penalty

*
1c  value decreases.

(b) When l  and α  are fixed, *
1c  decreases

by Ep , since the larger the sample sizes

is, the more easier to tell which of the
model should be chosen, thus, *

1c  value

decreases.
(c) When Ep  is really large, *

1c  stays stable
for 3≤l , and for l >3, the *

1c  has a

lightly changing in the value, with larger
angle α  causing smaller *

1c  value.

  One example was illustrated to explain the
use of *

1c . When 1=Ad  , 2=Bd  and

8
πα = (which means the correlation between

the first pair of the canonical variables is
)8( cos π ), to choose a suitable *

1c  value for

which  ) ( AselectP is at least 0.5 when A
actually fits better than B, when Ep  is 10, the

*
1c  value chosen to be used is about 1.18 with

minor difference according to the length l ,
and when Ep  is 20, the *

1c  value chosen to

be used is about 1.09 with minor difference
according to the length l . Choosing any
value '

1c  bigger than *
1c  will cause selecting

model A more and selecting model B less.
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