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Abstract

Base sequences of deoxyribonucleic acid (DNA) in an organism carry all the instructions 

regarding its growth and development. On the surface, such sequences seem irregular; yet in reality, 

they are symbolic sequences with an organized structure. This study investigates the characteristics 

of base arrangement and distribution in DNA sequences from the fractal theory viewpoint. In 

addition to multifractal features demonstrated by the DNA sequence, this study also compares the 

multifractal spectra derived from a particular family of gene among several different species. The 

results reveal that a considerable correlation exists between base distribution and evolutionary order. 

Furthermore, local scaling exponent (Hölder exponent) differences between coding segments (exon) 

and non-coding segments (intron) are also examined. It is suggested that such differences in the 

local distribution of bases can be applied to find coding segments within the DNA sequence that is 

to be translated into protein. This local scaling analysis is feasible and has the potential to become 

an effective tool for rapid location of possible coding sites in DNA sequences. The authors hope 

that future studies using more complicated bioinformatics methods for analyzing DNA sequences 

can benefit from this study. 

Keywords: DNA sequence, local scaling analysis, Hölder exponent, multifractal. 
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1. Introduction 

Complex DNA base sequence studies began twenty years ago. In the 1980s, Gates started to 

map bases in a DNA sequence onto a two-dimensional space [1]. In the 1990s, Peng et al. [2] 

published a paper in the Nature journal. It was the first time that DNA base sequences transformed 

into a one-dimensional irregular walk, named “DNA walk.” One-dimensional DNA walk can be 

defined as: if pyrimidine is located in the i-th position along the DNA chain, then the walker steps 

up ( 1)( ��iu ); if purine is found, then the walker steps down ( 1)( ��iu ). Calculate the sum of 

)(iu  after l steps and a curve y(l) for DNA walk can be obtained. DNA walk not only provides a 

simple and intuitional representation of each DNA sequence but also assists in analyzing 

correlations among DNA base sequences through calculating root mean square fluctuation F(l) of 

average displacement. F(l) can be used to distinguish three types of behaviors: (1) if nucleotide 

sequence is random, then 2/1~)( llF ; (2) if local correlation can be found within a certain 

characteristic range (such as Markov chain) with asymptotic behavior to a purely random sequence, 

then, eventually 2/1~)( llF  for large l; (3) if characteristic length does not exist, then the relation 

between fluctuation F(l) and l is power law, �llF ~)( , with 2/1�� , indicating that DNA walk 

features self-similarity, or fractal property [3]. Peng et al. [2] analyzed nucleotide sequences of 

genes and discovered a long-range correlation among genes abundant with intron, counting up to 

thousands of bases. On the contrary, for cDNA and genes with scarce intron, 2/1�� ; in other 

words, long-range correlation is not observed. A major obstacle to overcome in long-range 

correlation analysis is that the DNA sequence’s mosaic structure causes the four bases A (adenine), 

G (guanine), T (thymine), C (cytosine) strand biases and “trend” presence in a DNA walk [4–6]. 

Peng [2] proposed a Min-Max Method to overcome this problem, which unfortunately required 

determination on the number of local maximum and minimum in a DNA walk curve, suffering from 

practical application difficulties. Therefore, Peng et al. [7] later proposed the Bridge Method and 
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Detrended Fluctuation Analysis, or DFA. In 1993, Buldyrev et al. [8] used DFA to investigate 

genes in the myosin heavy chain family to examine the relation of base sequence fractal complexity 

to evolution. The use of single gene family can avoid potential bias caused by different evolutionary 

pressures and various base compositions among irrelevant gene families. Their analytical results 

reveal that, for species from eukaryotes to invertebrates to vertebrates, the correlation coefficient 

features monotonic increase. After that, Ossadnik et al. [9] proposed the Coding Sequence Finder 

Algorithm (CSF), based on DFA. First, a certain “window size” is selected. Then the DNA 

sequence is divided into several regions, which are respectively measured for individual DFA 

exponents. The results reveal that the local value of the DFA exponent typically displays minima 

where genes are suspected. Reviews about DFA’s applications can be referred to in the 

bibliography [10]. 

DNA walk is very intuitional, but for the nucleotide sequences, it involves introducing 

artificial correlations into DNA walks of less than four dimensions. To avoid introducing artificial 

correlation, Voss [11] proposed a simple method that separates a DNA base sequence into four 

sub-sequences of A, G, T, and C, each of which stands for base location in the original DNA 

sequence. For example, sub-sequence A is a numeric sequence obtained by replacing A with 1 and 

replacing the other three bases with 0 in the original DNA nucleotide sequence, resulting in a time 

sequence )(nxA  that oscillates with position coordinate n. In this manner, time sequences for other 

bases can be defined as )(nxG , )(nxT , and )(nxC . Through Fourier transform, time sequences of 

these bases can be illustrated into a power spectra )( fSk , showing that basically they share similar 

tendency. In cases of larger f, )( fSk  is mostly white noise. Under low frequency, )( fSk

demonstrates a power law �ffSk /1~)( . In many cases, �f/1  noise is assumed independent of 

high-frequency white noise, so that high-frequency white noise can be deducted from )( fSk ,

making the long-range correlation within a low-frequency area more obvious. The Voss approach is 
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special in that the original DNA base sequence’s correlation function can be regarded as the sum of 

correlation functions of the four sub-sequences, )(nxA , )(nxG , )(nxT , and )(nxC . This 

conclusion also applies to spectral density. Thus, by figuring out the spectral densities of all 

sub-sequences, the spectral density of original DNA sequence can be obtained without assuming 

any correlation among the four bases.  

Besides aforementioned approaches, other DNA sequence analyses include general entropy 

function calculation [12], the Zipf linguistics method [13–14], Hurst exponent analysis [15–16], 

Hao’s geometric representations [17–19], two-dimensional DNA walk [20], nonlinear prediction 

method [21], cluster-size distribution [22–24] and so on. However, most of research methods focus 

on the overall properties of DNA sequences. The power spectra, for example, depict the average 

distribution of energy under each oscillation frequency contained in the sequence. Therefore, local 

energy variations in the oscillation frequency of the sequence cannot be obtained. An average 

component energy distribution for oscillations presented in natural phenomena is very rare, and this 

is true for DNA sequences. From a geometric point of view, the sequence of a particular base in a 

DNA strand can be viewed as a distribution of a set of points along a line. Naturally evolving 

systems are seldom characterized by a single scaling ratio; different parts of a system may be 

scaling differently. That is, the clustering pattern is not uniform over the whole system. Such a 

system is better characterized as a “multifractal” system [3, 25]. This study applies that notion in 

the same way to the study of DNA sequences. Since the production of a polypeptide chain (protein) 

only depends on the linear order of bases along the DNA strand, spatial distribution patterns of 

bases are scrutinized using multifractal formalism. 
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2. Local Scaling and Multifractal Analyses 

2.1 Multifractal Formalism 

Basically, the multifractal formalism is introduced to characterize non-uniformity of a fractal 

distribution. Let l  be the size of the covering boxes and )(lPi  be the fraction of points (mass 

density or probability measure) in the thi box. Then, in the limit 0	l , an exponent (singularity 

strength, or Hölder exponent) 
  can be defined by 


llPi �)(                                                           (1) 

In general, 
  is not uniformly distributed and can therefore serve as the crowding index of a 

local cluster. If the number of boxes )(
N  where the probability measure iP  has a singularity 

strength between 
  and 

 d�  is counted, then )(
f  can be loosely defined as the fractal 

dimension of the set of boxes with singularity strength 
  by [25] 

)()( 

 flN ��                                                        (2) 

This formalism thus describes a multifractal measure in terms of interwoven sets of different 

singularity strengths
 , where each set is characterized by its own fractal dimension )(
f .

Another useful multifractal formalism is the so-called generalized dimension, defined as [26–27] 

l

lP

q
D i

q
i

lq log

)(log

1
1lim

0

�
�

�
	

 ,                                            (3) 

where the probability iP  is raised to the power of q . Thus, different values of q  emphasize 

distribution with differing degrees of clustering vicinities. In a point distribution set, qD  with the 

limit �	q  is associated with the fractal dimension of the most densely occupied regions in the 

set, while qD  with �	q  is associated with the fractal dimension of the least populated 

regions. This formalism quantifies the non-uniformity of a distribution based on the statistical 
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moments of its probability measure. 

As the generalized dimension qD  is computed, the multifractal spectrum )(
f  is usually 

evaluated from qD via a Legendre transformation [25]: 

dqd
qf

Dqq q

/

)1()(

�

�


�

�
��

��

                                                      (4) 

However, as other studies indicate [28–29], the validity of the Legendre transformation relies 

on the smoothness of functions )(
f  and qD . In the attempt to obtain qD  by scaling the 

probability measures q
iP  with box sizes l , naturally evolving and experimentally observed data 

often produce a log–log plot featuring oscillations and scattering rather than perfect linear behavior, 

especially when the value of q  is large. This then produces a qD  curve with large uncertainties. 

Applying the Legendre transformation to such a curve may generate false results and make error 

estimation in the 
�f . Previous studies propose a direct determination of )(
f  to circumvent 

this pitfall. This method first involves constructing a one-parameter family of normalized measures 

)(q�  at each box i  from probabilities )(lPi :

� �
� ��

�

j

q
j

q
i

i lP
lP

lq
)(

)(
),(�                                                   (5) 

Then, )(
f  is simply the Hausdorff dimension of the measure-theoretic support of )(q� ,

which is given by 

l

lqlq
qf i

ii

l log

),(log),(
lim)(

0

�
�

�
��

 .                                      (6) 

The value of the singularity strength 
 , averaged with respect to )(q� , can be computed 

from the following equation: 
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l

lPlq
q i

ii

l log

)(log),(
lim)(

0
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�

�
�


                                           (7) 

Equations (6) and (7) provide an alternative definition of the multifractal spectrum, which can be 

used to obtain )(
f  directly from real-world data without using the Legendre transformation. 

Subsequent calculation in make use of this method. 

2.2 Calculations of Hölder exponent 
  for DNA sequences

Featuring DNA’s structure by the variation of local scaling exponent curve (or Hölder 

exponent 
 ) according to the location of base in DNA chain is the idea of this study. Since exon 

and intron in the DNA sequences differ notably in Hölder exponent distribution, it can be applied to 

find coding DNA sequences. The definition of 
  is as follows: 

l
lPi

l log
)(log

lim
0	

�
                                                (8) 

in which NlNlP ii /)()( �  refers to the proportion of designated bases (depending on the rule 

applied) fall into sub-covers centered at the i-th base position with radius of l/2 against the total 

number of bases. 
 =1 refers to an evenly distributed structure of base pairs, while 
 <1 and 


>1 stand for “a densely occupied region surrounded by sparse vicinity” and “a less populated region 

surrounded by dense vicinity” structures respectively.  

2.3 Calculations of Multifractal Spectrum for DNA sequences

In addition to the Hölder exponent, our analysis on DNA sequence also included multifractal 

spectrum analysis. Calculation of multifractal spectrum )(
f  comprises several steps. First, the 

DNA sequence is considered point distribution by different rules. These points are then covered by 

boxes of size l. If the proportion of designated bases (depending on the rule applied) that fall into 

the i-th box is )(lPi , then ),( lqi�  can be calculate through equation (5). From equation (6), (7), 

the equations for )(qf  and )(q
 , values of �
i

ii lqlq ),(log),( ��  and �
i

ii lPlq )(log),(�
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when covered with boxes of size l can be calculated first. Further, the value of l is changed to find 

out each corresponding value of �
i

ii lqlq ),(log),( ��  and �
i

ii lPlq )(log),(� . The results are 

respectively illustrated in the diagrams for llqlq
i

ii log),(log),( �� ��  and 

llPlq
i

ii log)(log),( ��� . Areas of scaling region in the diagram are found and then fitted by the 

least square method to calculate the slope, which is the value of )(qf  and )(q
 . In accordance 

with various q, the values of )(qf  and )(q
  are respectively calculated and then plotted into the 

coordinate system. The curve is the )(
f  spectra.

3. GenBank Analysis and Discussion 

3.1 Local Scaling Analyses 

Detailed spatial organization of nucleotide sequences can be analyzed by inspecting the 

distribution of the Hölder exponent 
 . The Hölder exponent compares the invariant scaling nature 

of the population density of bases in a small region centered at position i  with that in the vicinities 

of increasing sizes. Variations in 
  values with base position i  signify changes in the local 

clustering pattern of bases along the DNA strand.  

Various rules for forming point distribution are possible; for example, a point distribution of 

each different base A, T, C, G can be formed separately (the single base rule); a point distribution 

can contain A and G only (the purine–pyrimidine rule), and a point distribution can contain G and C 

only (the hydrogen bond rule), etc. [30–32]. The purine–pyrimidine rule is related to the strand 

chemical bias. Further, since A can hydrogen bond specifically only with T and G can bond 

specifically only with C, the hydrogen bond rule is related to the strand separation energy balance.  

Adopting the purine-pyrimidine rule means that, reading from the beginning of a DNA 

sequence and down along the strand, each base position encountered is filled by either a black point 
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for a purine (A or G) or a white point for a pyrimidine (C or T). The resulting purine bases are 

treated as a distribution of a set of points in a one-dimensional line. With each point (black or 

white), various range l applied, count the black point number )(lN  in the range considered. 

Dividing )(lN  by the total number of black points N reveals the proportion value under different l,

)(lP . The results are then illustrated onto )(loglog lPl � , where the slope obtained from least 

square fitting the data points can be regarded as the Hölder exponent of this base location. The error 

in 
  is estimated from the standard deviation of fitted data from the linear slope. A similar 

approach can be applied to each base location to produce a Hölder exponent curve. When the base 

selected is too close to either end and the range l is too large, the sub-cover will exceed the DNA 

sequence, causing an edge effect. Hence, this study does not analyze 
  from the very beginning 

of the sequence, nor near the end of the sequence. Instead, it analyzes DNA sequences within the 

1/10 to 9/10 sections of the sequence. 

The myosin heavy chain gene family represents one of the few gene families whose complete 

sequences are well documented in the GenBank for a phylogenetically diverse group of organisms. 

This documentation provides a good opportunity to look into the fractal property changes of their 

components’ spatial organization with evolution. Thus, the type II myosin heavy chain gene family 

was selected as the subject of this research and was first investigated by examining the Hölder 

exponent. In general, the purine–pyrimidine rule provides the most robust results, probably due to it 

reflects chemical structure similarities and preserves the most common point mutations, from purine 

to purine and from pyrimidine to pyrimidine, in the original genes [33]. Hence, listing the results of 

purine–pyrimidine rule first, as in other rules, is also feasible.  

Figure 1 shows a typical log-log plot of purine base populations )(lPi  vs. sizes of boxes and 

fitting lines centered at the base position 12458�i  of the human cardiac–myosin heavy chain 

gene. The smallest box has a width of just a few base pairs, while the largest box can extend to a 
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length of a few thousand base pairs. To avoid an edge effect, the largest box size is limited to 1/5 of 

the total base pairs in the chain, in this case, about 5600 bps. As Figure 1 indicates, most points fall 

on the fitting line very well. The slope of the line is 1.2987, which means the Hölder exponent 


is 1.2987.  

Figure 2 shows the variation of 
  along the entire strand of the human myosin heavy chain 

gene as calculated by the purine–pyrimidine rule for DNA sequence in the human myosin heavy 

chain gene. An irregular fluctuation of the curve is apparent, suggesting non-uniformity in base 

distributions. The 
  value calculated by the purine–pyrimidine rule fell between 0.8 and 1.5, 

similar to the range in most other rules. The diagram shows that, to avoid the aforementioned edge 

effect, the curve is not calculated from the first to the last base. Overlaying the known positions of 

exon segments (extracted from the GenBank) on the 
  curve calculated from the human myosin 

heavy chain gene reveals the surprising feature that most exons appear to be at the regions where 

the Hölder exponent 
  is less than one (see Figure 2, border lines in Figure 2 represent exons 

while thinner lines represent the Hölder exponent oscillation curve). If a “matching ratio” is the 

percentage of exons that falls in the region with 1�
 , then computation reveals that the matching 

ratio reached )%8.86( 2.3
1.4

�
� . The �  errors are estimated from uncertainties in the 
  values. 

Uncertainties are inevitable for least square fitting similar to that in Figure 1, which then lead to an 

upward or downward shifting of the 
  curve and hence change the matching ratio.  

The biological explanation of this phenomenon is currently not well established. However, the 

present results lend support to the findings of [34–36], which analyze the cluster-size distributions 

in coding and non-coding DNA sequences. Notice that in Figure 2, large peaks in the 
  curve are 

normally found between exon segments, indicating the existence of large clusters (either pyrimidine 

or purine) in the non-coding regions. This is consistent with the claims made in [34–36] that the 

power-law behavior of the base sequence is associated with the tendency of large pyrimidine and 
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purine cluster formation in the non-coding regions. Moreover, Raghavan et al. [37] also observed 

that polypurines preferentially occur in genome coding regions, whereas such a bias does not occur 

in non-coding regions. Most exon segments observed would therefore be located in sections where 

the Hölder exponent curve of the purine distribution is less than one.  

The results of myosin heavy chain gene family including Baker's Yeast, Caenorhabditis

elegans, Brugia Malayi, fruit fly, chicken, rat, and human are summarized in Table 1. The fourth 

column of Table 1 shows that the number of exon segments in the myosin heavy chain gene family 

increases with the evolutionary order. The fifth column in Table 1 indicates that, except for the fruit 

fly with a total exon length of 8024 base pairs, most species have a length of around 6000 base pairs. 

The total exon length does not vary drastically with evolution, yet the total DNA sequence length 

increases. Therefore, the proportion of exon in a DNA sequence decreases from 100% to about 21%. 

Further, the seventh column in Table 1 shows that the matching ratio tends to increase (from 50% in 

yeast to 87% in human genes), indicating that exon segments of higher species are more likely to 

coincide with sections where A and G bases cluster. To assess whether such a trend could result 

from a possible 
  value bias (e.g., there are probably more places with 1�
  in the genetic 

sequence of higher species), the sixth column of Table 1 lists the percentage of length in the 

sequence with 1�
 . All species have roughly the same percentage value; the maximum difference 

is only about 4%. Yet the matching ratio is 50% in yeast and 87% in human. Obviously, this result 

is not fortuitous. The eighth column in Table 1 indicates that, in human myosin heavy chain genes, 

a total of 39 exon segments fall within the range analyzed (number in parentheses). This total 

contains 33 exon segments with a 70% length that fall within the sections where 
 <1. The 

proportion is about 84.6%, which also increases with the evolutionary order. 

In addition to the myosin heavy chain gene family, this study analyzes another 335 DNA 

sequences, including 74 Caenorhabditis elegans genes, 36 bird genes, 45 rat genes, and 180 human 

genes. Including the myosin heavy chain gene, the total number of DNA sequences analyzed is 342. 
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Table 2 summarizes the analysis results. The seventh row in Table 2 indicates that the average 

matching rates for Caenorhabditis elegans, birds, rats, and human are 59.5%, 68.2%, 66.2% and 

70.3%, respectively, as calculated from the purine base distribution (purine-pyrimidine rule). The 

eighth row in Table 2 shows that the proportion of exon segments with 70% length that fall within 

sections of the curve where 
 <1 to total exon segments in the analyzed sections are 37.1%, 55.6%, 

47.5% and 56.8%, respectively. Figure 3 shows calculation results for the human gene DNA 

sequences, according to purine distribution. 

Sometimes consideration of the Hölder exponent curve calculated by purine distribution only 

cannot produce the best results. Therefore, it is necessary to search other common characteristics of 

protein-coding segments to increase the accuracy. Some studies suggest that coding sequences in 

genes tend to contain more G and C bases than non-coding sequences, and that is particularly 

obvious in the DNA sequences of warm-blooded vertebrates [38–41]. This means that the DNA 

sequence coding segments could also fall within sections where the Hölder exponent of the G and C 

base distribution is less than one. For this reason, this study also calculates the Hölder exponent 

curves for G and C base distribution for all DNA sequences. Figure 4 shows some of these results. 

The ninth to eleventh columns of Table 1 summarize in detail the data for the myosin heavy chain 

gene family, and the ninth to tenth rows of Table 2 summarize all 339 DNA sequences. The exon 

segments fit well with the Hölder exponent curve of G and C base distribution where the Hölder 

exponent is less than one.  

Because different species or different genes differ dramatically in base arrangement, it is 

sometimes not enough to consider the Hölder exponent curve based on only one rule. Integrating 

different rules may be a good idea [42]. Therefore, two rules mentioned previously can perhaps be 

combined to obtain more accurate results. Figure 5 compares exon segments, Hölder exponent 

curves for AG base distribution, and GC base distribution of several human DNA sequences. This 

figure indicates that some predictions on the exon segments of the DNA sequence using sections 
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where the Hölder exponent curve of the purine distribution is less than one are not very accurate. 

Yet these exon segments can fit well with sections where the G and C base distribution’s Hölder 

exponent curve is less than one. The fifth column in Table 2 shows that the 181 human genes have a 

total of 1171 exon segments. Of this, total 665 segments (56.8%) with 70% length fall within the 

sections where the purine distribution’s Hölder exponent curve is less than one and 794 segments 

(67.8%) with 70% length fall within the sections where the G and C base distribution’s Hölder 

exponent curve is less than one. However, integrating the Hölder exponent curves for AG bases and 

GC bases shows that 1022 exon segments (87.3%) with 70% length fall within sections where the 

GC base or AG base distribution’s Hölder exponent curve is less than one. Human myosin heavy 

chain genes have 36 exon segments with 70% length that fall within sections where the GC base or 

AG base distribution’s Hölder exponent curve is less than one (see the twelfth column in Table 1). 

This is more than the original 33 segments, which comes from considering AG base distribution 

only (see the eighth column in Table 1). 

As mention above, the coding sequences tend to appear in regions of the DNA sequence with 

abundant AG or GC bases. In other words, the coding sequences tend to exist in DNA sequence 

regions with a scarcity of the T base. Therefore, exon segments might be found within sections 

where the T base distribution’s Hölder exponent curve is greater than 1. Figure 6 compares the T 

base distribution’s Hölder exponent curve and exon segments in several human gene DNA 

sequences. This figure shows that the exon segments of some human genes fit well with the 1�


sites of the T base’s Hölder exponent curve. 

Many methods of bioinformatics about predicting genes or genetic sequences that can be 

coded into proteins have recently been proposed. Despite the diversity of these approaches, none of 

the above methods is perfect. In order to achieve a better prediction, it is sometimes necessary to 

integrate results from various programs. The GRAIL algorithm [43], for example, collects various 

methods of analysis and determines regions for coding DNA sequences as its “sensors” before 
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applying a neural network to predict DNA coding segments: one sensor, among many others, is a 

fractal dimension. The approach to find segments to be coded into proteins using the Hölder 

exponent curve proposed in this study has the advantages of simplicity, less calculation and do not 

need specify any window size. Perhaps in the future, this method can be integrated into GRAIL’s 

sensor, as the fractal dimension, to help other methods of bioinformatics. 

3.2 Multifractal Spectrum Analyses 

Previous studies use two multifractal methods to study the structure of DNA sequences, 

including generalized dimensions [44–49] and the multifractal spectrum [50–51]. This study 

focuses on the multifractal spectrum behavior of DNA sequences only. Most researchers first 

transfer DNA sequences in DNA walk before calculating the multifractal spectrum, but this study 

does adopt this approach because it involves artificial correlation. Instead, the DNA sequence is 

viewed directly as the set of the four letters of the alphabet (A, G, T and C). Further, different rules 

were applied to calculate the probability that a certain kind of base falls into the box, and 

multifractal spectra are then calculated using formulas mentioned before. 

3.2.1 Application to Myosin Heavy Chain Gene 

Figure 7 illustrates the multifractal spectra ( )(
f  spectra) of the human cardiac � –myosin 

heavy chain gene, calculated by different rules. In this diagram, A, T, G, and C stand for various 

single base rules, respectively, while G+C represents the hydrogen bond rule and A+G represents 

the purine-pyrimidine rule. All the )(
f  curves have an inverted and downward-opening 

parabolic shape; that is, the DNA sequence features a multifractal structure, but the opening of the 

)(
f  curve varies with different rules. For example, the 
  value of the purine distribution (A+G) 

is between approximately 0.8 and 1.4.  

To confirm this heterogeneity in base distribution, the positions of these bases are scrambled 

by a random scheme (base pair numbers, A, G, T, and C, remain the same as those in the original 
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sequence). Figure 8 plots the resulting )(
f  spectra of the purine distribution and the result of 

original DNA sequences in the same figure. The crosses on the symbols in the diagram stand for 

uncertainties in the values of 
  and )(
f  arising from the least square fitting procedure in 

Equation (6) and (7). A wider opening of the parabola in the diagram indicates that purine bases of 

original DNA sequences before scrambling are not uniformly distributed along the human myosin 

heavy chain gene; rather, they tend to form clusters of different sizes. After scrambling, a much 

smaller opening curve occurs, indicating that the base sequence has a more uniform distribution. 

This implies that the DNA sequence base arrangement in the human myosin heavy chain gene is far 

more complicated than any random sequence and carries considerable messages. The remaining 

slight opening )08.194.0~( �
  of the curve is perhaps due to the so-called “strand bias” (there 

are slightly more purines than pyrimidines in the myosin heavy chain gene) normally observed in 

genomes. 

All introns are deleted, and the remaining exon segments of the human’s myosin heavy chain 

gene are stitched together to form a shorter sequence containing protein-coding regions only. Figure 

9 gives the corresponding )(
f  spectra of purine distribution. Compared with the spectra of 

original DNA sequence in Figure 8, a much narrower )(
f  is observed. Scrambling this shorter 

sequence produces little difference in )(
f  (see Figure 9), implying that the protein-coding 

sequence has a more uniform and random-like base distribution than the original intron-rich 

sequence. This observation is consistent with previous findings based on the random-walk model, 

which state that long-range correlation is associated with intron parts of DNA sequence. 

Next, this study calculates the )(
f  spectra of seven species’ DNA sequences in the myosin 

heavy chain gene family, ranging from yeast to human (homo sapiens). Figure 10 shows the result 

of purine distribution in DNA sequence. Comparing the )(
f  spectra obtained from the seven 

species in Figure 10, the gradual opening of the )(
f  curve indicates that the purine distribution 
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of DNA sequences of higher species is more uneven, irregular, and has more local clusters. These 

variations suggest an increasing complexity in the structures of DNA sequences. Again, the degree 

of complexity follows the evolutionary order from fungus, invertebrates, vertebrates, to human. This 

result agrees with Table 1, which reveals that higher species have more fragmented coding regions 

in their DNA sequences.  

The multifractal spectra of DNA sequences obtained by deleting all introns and stitching 

together the remaining exon segments for the corresponding seven species are shown in Figure 11. 

Comparing Figure 11 and Figure 10, the opening of )(
f  curves obtained from stitching together 

the remaining exon segments are much smaller than original DNA sequences for most species, 

except yeast. This means that protein-coding sequences are much more evenly distributed than the 

original sequence. In Figure 11, the difference in the openings of all )(
f  curves obtained from 

the seven species is insignificant; suggesting the complexity of protein-coding sequences in DNA is 

almost the same among different species. 

3.2.2 Application to Mitochondria Genome 

The primary function of mitochondria is to convert oxygen and nutrients into adenosine 

triphosphate (ATP), so they can be considered the power generators of cells. Because many species 

have this organelle, the DNA sequence of the mitochondrion can also be used to study evolution 

using the multifractal spectrum. Figure 12 shows the multifractal spectrum for the purine 

distribution of the human mitochondrion DNA sequence. The multifractal spectrum obtained from 

the same sequence but with bases positions scrambled by using a random scheme is also provided 

for comparison, from which it can be inferred that the disturbance does not have a considerable 

influence on the )(
f  curve opening. This phenomenon may be related to the fact that human 

mitochondrion DNA is extremely compact and contains no introns. A comparison of multifractal 

spectra for the mitochondrion DNA sequences of different species, shown in Figure 13, shows that 
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the openings of these )(
f  curves are not wide, ranging from only 0.9 to 1.1. Considering the 

insignificant difference in opening size and error margins, it is clear that the order of opening size 

cannot be determined; i.e., degrees of complexity in the structure of these DNA sequences are about 

the same. In fact, except for yeast, almost all the mitochondrion DNA sequences are of the same 

length and, quite different from the myosin heavy chain gene family, the exon segments of higher 

species with inheritance messages do not scatter more widely along the DNA sequence. This may 

account for the insignificant opening size difference in the )(
f  curves. Mitochondrion DNA is 

derived from bacteria that were engulfed by early precursors of eukaryotic cells. In mammals and 

for most, but not all, organisms, mitochondrion DNA is inherited from the mother. Unlike nuclear 

DNA in which the genes are rearranged each generation due to the process called recombination, 

there is usually no change in mitochondrion DNA from parent to offspring by this mechanism. 

Hence, the mitochondria genomes in animal cells show extensive homology in organization. This 

may account for the insignificant difference in opening size of the )(
f  curves for different 

species.
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4. Conclusion 

This study employed a multifractal formalism to investigate the fractal nature of DNA 

sequences. Phylogenetic study of the spatial organization of nucleotide sequence collected and 

organized from GenBank was performed using a local scaling and multifractal spectrum analysis 

technique. As for the multifractal spectrum )(
f  of the myosin heavy chain gene family, the 

familiar, inverted, downward-opening parabola curve shape is present. The finding demonstrates 

the arrangement of bases in DNA sequence does exhibit a multifractal feature. The gradual opening 

of the )(
f  curves associated with different species suggests an increasing complexity in the 

structures of DNA sequences with evolutionary order. The widest opening )(
f  of the parabola 

indicates that purine bases are not uniformly distributed along the human myosin heavy chain gene; 

rather, they tend to form clusters of different sizes. Therefore, it may be possible to determine the 

evolutionary level of an unknown genetic DNA sequence by considering the multifractal spectrum 

opening. Unlike myosin heavy chain gene family, the openings of the )(
f  curves for 

mitochondria DNA show insignificant difference among different species. This indicates that the 

coding segments along the mitochondria DNA sequences of higher species do not disperse widely; 

and different species share similar structural complexity in the mitochondria DNA sequences. 

The local scaling analysis of the myosin heavy chain gene family suggests that higher species 

have more fragmented exon segments that take up a smaller portion of the whole sequence, and 

more exon segments fall within sections where the purine distribution’s Hölder exponent 
  is less 

than one; this is related to the phenomenon that base (purine or pyrimidine) distribution in the DNA 

sequence of higher species tends to be uneven, irregular, and dense in local regions. This result also 

agrees with the observed increase in the width of the )(
f  curve openings for higher-level 

species. Furthermore, analyzing 339 DNA sequences obtained from Caenorhabditis elegans, birds, 
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rats, and humans shows that there is also an apparent tendency of increasing correlation between the 

exon locations in the sequence and sections where the purine distribution’s Hölder exponent 
  is 

less than one with phylogenetic order. On the other hand, there are cases where coding sequences in 

genes tend to contain more G and C bases than non-coding sequences, and exon segments may also 

fit well with the G and C base distribution’s Hölder exponent curve where the Hölder exponent is 

less than one. Therefore, considering the Hölder exponent curve for either AG or GC bases 

distribution only may not achieve the best prediction for coding segments. Simultaneously 

considering Hölder exponent curves calculated by adopting different rules, such as the 

purine–pyrimidine rule and hydrogen bond rule, may have a complementary effect and can lead to a 

more accurate prediction. The phenomenon that exon segments of higher species fall within 

sections where the purine distribution’s Hölder exponent curve is less than one may be due to 

clustering pyrimidine in DNA sequence intron in the process of evolution. While possible reasons 

for exon segments of higher species fall within sections where the Hölder exponent curve of the GC 

base distribution is less than one (i.e. GC rich) include adaptation to elevated temperatures, active 

gene transcription, mutation bias, or biased gene conversion (BGC) [41]. The present analysis 

substantiates the feasibility of finding exon segments in DNA sequences using the local scaling 

exponent. Because the method is simple, with less calculation work and dispenses with specifying 

window sizes. The authors hope that other more complicated bioinformatics methods for analyzing 

DNA sequences can benefit from this study in the future. 
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Table 2 Summary of local scaling analysis on 339 DNA sequences of different species collected 

from GenBank 

Species Caenorhabditis

elegans
Bird Rat Human 

Number of sequences 

(including myosin heavy chain gene family) 
75 37 46 181 

Total length of sequences 465459 306376 267478 1946379 

Total length analyzed 372514 245171 214068 1557435 

Total number of exon segments 533 275 278 1340 

Exon segments in the analyzed sections 501 257 261 1171 

Average matching rate (A+G) 59.5% 68.2% 66.2% 70.3% 

Number and percentage of segments  

with the matching rate over 70% (A+G) 
186(37.1%) 143(55.6%) 124(47.5%) 665(56.8%) 

Average matching rate (G+C) 71.8% 72.0% 68.7% 75.9% 

Number and percentage of segments  

with the matching rate over 70% (G+C)  
323(64.5%) 157(61.1%) 142(54.4%) 794(67.8%) 

Number and percentage of segments  

with the matching rate over 70% (A+G or G+C) 
361(72.1%) 204(79.4%) 204(78.2%) 1022(87.3%)
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Abstract

Base sequences of deoxyribonucleic acid (DNA) in an organism carry all the instructions regarding its growth
and development. On the surface, such sequences seem irregular; yet in reality, they are symbolic sequences with an
organized structure. This study investigates the characteristics of base arrangement and distribution in DNA
sequences from the fractal theory viewpoint. In addition to multifractal features demonstrated by the DNA
sequence, this study also compares the multifractal spectra derived from a particular family of gene among several
different species. The results reveal that a considerable correlation exists between base distribution and evolutionary
order. Furthermore, local scaling exponent (Hölder exponent) differences between coding segments (exon) and non-
coding segments (intron) are also examined. It is suggested that such differences in the local distribution of bases
can be applied to find coding segments within the DNA sequence that is to be translated into protein. This local
scaling analysis is feasible and has the potential to become an effective tool for rapid location of possible coding
sites in DNA sequences. The authors hope that future studies using more complicated bioinformatics methods for
analyzing DNA sequences can benefit from this study.
� 2007 Elsevier Ltd. All rights reserved.
     

1. Introduction

Complex DNA base sequence studies began twenty years ago. In the 1980s, Gates started to map bases in a DNA
sequence onto a two-dimensional space [1]. In the 1990s, Peng et al. [2] published a paper in the Nature journal. It was
the first time that DNA base sequences transformed into a one-dimensional irregular walk, named ‘‘DNA walk.’’ One-
dimensional DNA walk can be defined as: if pyrimidine is located in the ith position along the DNA chain, then the
walker steps up (u(i) = +1); if purine is found, then the walker steps down (u(i) = �1). Calculate the sum of u(i) after
l steps and a curve y(l) for DNA walk can be obtained. DNA walk not only provides a simple and intuitional repre-
sentation of each DNA sequence but also assists in analyzing correlations among DNA base sequences through calcu-
lating root mean square fluctuation F(l) of average displacement. F(l) can be used to distinguish three types of
0960-0779/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.chaos.2007.09.078
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behaviors: (1) if nucleotide sequence is random, then F(l) � l1/2; (2) if local correlation can be found within a certain
characteristic range (such as Markov chain) with asymptotic behavior to a purely random sequence, then, eventually
F(l) � l1/2 for large l; (3) if characteristic length does not exist, then the relation between fluctuation F(l) and l is
power-law, F(l) � ld, with d 5 1/2, indicating that DNA walk features self-similarity, or fractal property [3]. Peng
et al. [2] analysed nucleotide sequences of genes and discovered a long-range correlation among genes abundant with
intron, counting up to thousands of bases. On the contrary, for cDNA and genes with scarce intron, d � 1/2; in other
words, long-range correlation is not observed. A major obstacle to overcome in long-range correlation analysis is that
the DNA sequence’s mosaic structure causes the four bases A (adenine), G (guanine), T (thymine), C (cytosine) strand
biases and ‘‘trend’’ presence in a DNA walk [4–6]. Peng [2] proposed a min–max method to overcome this problem,
which unfortunately required determination on the number of local maximum and minimum in a DNA walk curve,
suffering from practical application difficulties. Therefore, Peng et al. [7] later proposed the bridge method and detrend-
ed fluctuation analysis, or DFA. In 1993, Buldyrev et al. [8] used DFA to investigate genes in the myosin heavy chain
family to examine the relation of base sequence fractal complexity to evolution. The use of single gene family can avoid
potential bias caused by different evolutionary pressures and various base compositions among irrelevant gene families.
Their analytical results reveal that, for species from eukaryotes to invertebrates to vertebrates, the correlation coefficient
features monotonic increase. After that, Ossadnik et al. [9] proposed the coding sequence finder algorithm (CSF), based
on DFA. First, a certain ‘‘window size’’ is selected. Then the DNA sequence is divided into several regions, which are
respectively measured for individual DFA exponents. The results reveal that the local value of the DFA exponent typ-
ically displays minima where genes are suspected. Reviews about DFA’s applications can be referred to in the bibliog-
raphy [10].

DNA walk is very intuitional, but for the nucleotide sequences, it involves introducing artificial correlations into
DNA walks of less than four dimensions. To avoid introducing artificial correlation, Voss [11] proposed a simple
method that separates a DNA base sequence into four sub-sequences of A, G, T, and C, each of which stands for base
location in the original DNA sequence. For example, sub-sequence A is a numeric sequence obtained by replacing A
with 1 and replacing the other three bases with 0 in the original DNA nucleotide sequence, resulting in a time sequence
xA(n) that oscillates with position coordinate n. In this manner, time sequences for other bases can be defined as xG(n),
xT(n), and xC(n). Through Fourier transform, time sequences of these bases can be illustrated into a power spectra Sk(f),
showing that basically they share similar tendency. In cases of larger f, Sk(f) is mostly white noise. Under low-frequency,
Sk(f) demonstrates a power-law Sk(f) � 1/fb. In many cases, 1/fb noise is assumed independent of high-frequency white
noise, so that high-frequency white noise can be deducted from Sk(f), making the long-range correlation within a low-
frequency area more obvious. The Voss approach is special in that the original DNA base sequence’s correlation func-
tion can be regarded as the sum of correlation functions of the four sub-sequences, xA(n), xG(n), xT(n), and xC(n). This
conclusion also applies to spectral density. Thus, by figuring out the spectral densities of all sub-sequences, the spectral
density of original DNA sequence can be obtained without assuming any correlation among the four bases.

Besides aforementioned approaches, other DNA sequence analyses include general entropy function calculation [12],
the Zipf linguistics method [13,14], Hurst exponent analysis [15,16], Hao’s geometric representations [17–19], two-
dimensional DNA walk [20], nonlinear prediction method [21], cluster-size distribution [22–24] and so on. However,
most of research methods focus on the overall properties of DNA sequences. The power spectra, for example, depict
the average distribution of energy under each oscillation frequency contained in the sequence. Therefore, local energy
variations in the oscillation frequency of the sequence cannot be obtained. An average component energy distribution
for oscillations presented in natural phenomena is very rare, and this is true for DNA sequences. From a geometric
point of view, the sequence of a particular base in a DNA strand can be viewed as a distribution of a set of points along
a line. Naturally evolving systems are seldom characterized by a single scaling ratio; different parts of a system may be
scaling differently. That is, the clustering pattern is not uniform over the whole system. Such a system is better charac-
terized as a ‘‘multifractal’’ system [3,25]. This study applies that notion in the same way to the study of DNA sequences.
Since the production of a polypeptide chain (protein) only depends on the linear order of bases along the DNA strand,
spatial distribution patterns of bases are scrutinized using multifractal formalism.
2. Local scaling and multifractal analyses

2.1. Multifractal formalism

Basically, the multifractal formalism is introduced to characterize non-uniformity of a fractal distribution. Let l be
the size of the covering boxes and Pi(l) be the fraction of points (mass, density or probability measure) in the ith box.
Then, in the limit l! 0, an exponent (singularity strength, or Hölder exponent) a can be defined by
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In general, a is not uniformly distributed and can therefore serve as the crowding index of a local cluster. If the num-
ber of boxes N(a) where the probability measure Pi has a singularity strength between a and a + da is counted, then f(a)
can be loosely defined as the fractal dimension of the set of boxes with singularity strength a by [25]
 NðaÞ / l�f ðaÞ ð2Þ
 
 

This formalism thus describes a multifractal measure in terms of interwoven sets of different singularity strengths a,
where each set is characterized by its own fractal dimension f(a). Another useful multifractal formalism is the so-called
generalized dimension, defined as [26,27]
 
 

Dq ¼ lim
l!0

1

q� 1

log
P

iP
q
i ðlÞ

log l
; ð3Þ
where the probability Pi is raised to the power of q. Thus, different values of q emphasize distribution with differing
degrees of clustering vicinities. In a point distribution set, Dq with the limit q! +1 is associated with the fractal
dimension of the most densely occupied regions in the set, while Dq with q!�1 is associated with the fractal dimen-
sion of the least populated regions. This formalism quantifies the non-uniformity of a distribution based on the statis-
tical moments of its probability measure.

As the generalized dimension Dq is computed, the multifractal spectrum f(a) is usually evaluated from Dq via a
Legendre transformation [25]:
sðqÞ ¼ ðq� 1ÞDq

f ¼ qa� s

a ¼ ds=dq

ð4Þ
However, as other studies indicate [28,29], the validity of the Legendre transformation relies on the smoothness of
functions f(a) and Dq. In the attempt to obtain Dq by scaling the probability measures P q

i with box sizes l, naturally
evolving and experimentally observed data often produce a log–log plot featuring oscillations and scattering rather than
perfect linear behavior, especially when the value of q is large. This then produces a Dq curve with large uncertainties.
Applying the Legendre transformation to such a curve may generate false results and make error estimation in the f � a.
Previous studies propose a direct determination of f(a) to circumvent this pitfall. This method first involves constructing
a one-parameter family of normalized measures l(q) at each box i from probabilities Pi(l)
liðq; lÞ ¼
½P iðlÞ�qP

j½P jðlÞ�q
ð5Þ
Then, f(a) is simply the Hausdorff dimension of the measure-theoretic support of l(q), which is given by
f ðqÞ ¼ lim
l 0

P
iliðq; lÞ log liðq; lÞ

log l
: ð6Þ
     
The value of the singularity strength a, averaged with respect to l(q), can be computed from the following equation:
aðqÞ ¼ lim
l 0

P
iliðq; lÞ log P iðlÞ

log l
ð7Þ
Eqs. (6) and (7) provide an alternative definition of the multifractal spectrum, which can be used to obtain f(a) directly
from real-world data without using the Legendre transformation. Subsequent calculation in make use of this method.

2.2. Calculations of Hölder exponent a for DNA sequences

Featuring DNA’s structure by the variation of local scaling exponent curve (or Hölder exponent a) according to the
location of base in DNA chain is the idea of this study. Since exon and intron in the DNA sequences differ notably in
Hölder exponent distribution, it can be applied to find coding DNA sequences. The definition of a is as follows:
a ¼ lim
l!0

log P iðlÞ
log l

ð8Þ
in which Pi(l) = Ni(l)/N refers to the proportion of designated bases (depending on the rule applied) fall into sub-covers
centered at the ith base position with radius of l/2 against the total number of bases. a = 1 refers to an evenly distributed
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structure of base pairs, while a < 1 and a > 1 stand for ‘‘a densely occupied region surrounded by sparse vicinity’’ and
‘‘a less populated region surrounded by dense vicinity’’ structures respectively.

2.3. Calculations of multifractal spectrum for DNA sequences

In addition to the Hölder exponent, our analysis on DNA sequence also included multifractal spectrum analysis.
Calculation of multifractal spectrum f(a) comprises several steps. First, the DNA sequence is considered point distri-
bution by different rules. These points are then covered by boxes of size l. If the proportion of designated bases (depend-
ing on the rule applied) that fall into the ith box is Pi(l), then li(q, l) can be calculate through Eq. (5). From Eqs. (6),(7),
the equations for f(q) and a(q), values of

P
iliðq; lÞ log liðq; lÞ and

P
iliðq; lÞ log P iðlÞ when covered with boxes of size l

can be calculated first. Further, the value of l is changed to find out each corresponding value of
P

iliðq; lÞ log liðq; lÞ
and

P
iliðq; lÞ log P iðlÞ. The results are respectively illustrated in the diagrams for

P
iliðq; lÞ log liðq; lÞ � log l andP

iliðq; lÞ log P iðlÞ � log l. Areas of scaling region in the diagram are found and then fitted by the least square method
to calculate the slope, which is the value of f(q) and a(q). In accordance with various q, the values of f(q) and a(q) are
respectively calculated and then plotted into the coordinate system. The curve is the f(a) spectra.
     

3. GenBank analysis and discussion

3.1. Local scaling analyses

Detailed spatial organization of nucleotide sequences can be analysed by inspecting the distribution of the Hölder
exponent a. The Hölder exponent compares the invariant scaling nature of the population density of bases in a small
region centered at position i with that in the vicinities of increasing sizes. Variations in a values with base position i

signify changes in the local clustering pattern of bases along the DNA strand.
Various rules for forming point distribution are possible; for example, a point distribution of each different base A,

T, C, G can be formed separately (the single base rule); a point distribution can contain A and G only (the purine–
pyrimidine rule), and a point distribution can contain G and C only (the hydrogen bond rule), etc. [30–32]. The pur-
ine–pyrimidine rule is related to the strand chemical bias. Further, since A can hydrogen bond specifically only with T
and G can bond specifically only with C, the hydrogen bond rule is related to the strand separation energy balance.

Adopting the purine–pyrimidine rule means that, reading from the beginning of a DNA sequence and down along
the strand, each base position encountered is filled by either a black point for a purine (A or G) or a white point for a
pyrimidine (C or T). The resulting purine bases are treated as a distribution of a set of points in a one-dimensional line.
With each point (black or white), various range l applied, count the black point number N(l) in the range considered.
Dividing N(l) by the total number of black points N reveals the proportion value under different l, P(l). The results are
then illustrated onto log l � logP(l), where the slope obtained from least square fitting the data points can be regarded
as the Hölder exponent of this base location. The error in a is estimated from the standard deviation of fitted data from
the linear slope. A similar approach can be applied to each base location to produce a Hölder exponent curve. When the
base selected is too close to either end and the range l is too large, the sub-cover will exceed the DNA sequence, causing
an edge effect. Hence, this study does not analyse a from the very beginning of the sequence, nor near the end of the
sequence. Instead, it analyses DNA sequences within the 1/10–9/10 sections of the sequence.

The myosin heavy chain gene family represents one of the few gene families whose complete sequences are well doc-
umented in the GenBank for a phylogenetically diverse group of organisms. This documentation provides a good
opportunity to look into the fractal property changes of their components spatial organization with evolution. Thus,
the type II myosin heavy chain gene family was selected as the subject of this research and was first investigated by
examining the Hölder exponent. In general, the purine–pyrimidine rule provides the most robust results, probably
due to it reflects chemical structure similarities and preserves the most common point mutations, from purine to purine
and from pyrimidine to pyrimidine, in the original genes [33]. Hence, listing the results of purine–pyrimidine rule first,
as in other rules, is also feasible.

Fig. 1 shows a typical log–log plot of purine base populations Pi(l) vs. sizes of boxes and fitting lines centered at the
base position i = 12,458 of the human cardiac-myosin heavy chain gene. The smallest box has a width of just a few base
pairs, while the largest box can extend to a length of a few thousand base pairs. To avoid an edge effect, the largest box
size is limited to 1/5 of the total base pairs in the chain, in this case, about 5600 bps. As Fig. 1 indicates, most points fall
on the fitting line very well. The slope of the line is 1.2987, which means the Hölder exponent a is 1.2987.

Fig. 2 shows the variation of a along the entire strand of the human myosin heavy chain gene as calculated by the
purine–pyrimidine rule for DNA sequence in the human myosin heavy chain gene. An irregular fluctuation of the curve
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is apparent, suggesting non-uniformity in base distributions. The a value calculated by the purine–pyrimidine rule fell
between 0.8 and 1.5, similar to the range in most other rules. The diagram shows that, to avoid the aforementioned edge
effect, the curve is not calculated from the first to the last base. Overlaying the known positions of exon segments
(extracted from the GenBank) on the a curve calculated from the human myosin heavy chain gene reveals the surprising
feature that most exons appear to be at the regions where the Hölder exponent a is less than one (see Fig. 2, border lines
in Fig. 2 represent exons while thinner lines represent the Hölder exponent oscillation curve). If a ‘‘matching ratio’’ is
the percentage of exons that falls in the region with a < 1, then computation reveals that the matching ratio reached
ð86:8þ3:2

�4:1Þ%. The ± errors are estimated from uncertainties in the a values. Uncertainties are inevitable for least square
fitting similar to that in Fig. 1, which then lead to an upward or downward shifting of the a curve and hence change the
matching ratio.

The biological explanation of this phenomenon is currently not well established. However, the present results lend
support to the findings of [34–36], which analyse the cluster-size distributions in coding and non-coding DNA
sequences. Notice that in Fig. 2, large peaks in the a curve are normally found between exon segments, indicating
the existence of large clusters (either pyrimidine or purine) in the non-coding regions. This is consistent with the claims
made in [34–36] that the power-law behavior of the base sequence is associated with the tendency of large pyrimidine
and purine cluster formation in the non-coding regions. Moreover, Raghavan et al. [37] also observed that polypurines
preferentially occur in genome coding regions, whereas such a bias does not occur in non-coding regions. Most exon
segments observed would therefore be located in sections where the Hölder exponent curve of the purine distribution
is less than one.

The results of myosin heavy chain gene family including Baker’s Yeast, Caenorhabditis elegans, Brugia malayi, fruit
fly, chicken, rat, and human are summarized in Table 1. The fourth column of Table 1 shows that the number of exon
segments in the myosin heavy chain gene family increases with the evolutionary order. The fifth column in Table 1 indi-
cates that, except for the fruit fly with a total exon length of 8024 base pairs, most species have a length of around 6000
base pairs. The total exon length does not vary drastically with evolution, yet the total DNA sequence length increases.
Therefore, the proportion of exon in a DNA sequence decreases from 100% to about 21%. Further, the seventh column
in Table 1 shows that the matching ratio tends to increase (from 50% in yeast to 87% in human genes), indicating that
exon segments of higher species are more likely to coincide with sections where A and G bases cluster. To assess
whether such a trend could result from a possible a value bias (e.g., there are probably more places with a < 1 in
the genetic sequence of higher species), the sixth column of Table 1 lists the percentage of length in the sequence with
a < 1. All species have roughly the same percentage value; the maximum difference is only about 4%. Yet the matching
ratio is 50% in yeast and 87% in human. Obviously, this result is not fortuitous. The eighth column in Table 1 indicates
that, in human myosin heavy chain genes, a total of 39 exon segments fall within the range analysed (number in paren-
theses). This total contains 33 exon segments with a 70% length that fall within the sections where a < 1. The proportion
is about 84.6%, which also increases with the evolutionary order.

In addition to the myosin heavy chain gene family, this study analyses another 335 DNA sequences, including 74 C.

elegans genes, 36 bird genes, 45 rat genes, and 180 human genes. Including the myosin heavy chain gene, the total num-
ber of DNA sequences analysed is 342. Table 2 summarizes the analysis results. The seventh row in Table 2 indicates
that the average matching rates for C. elegans, birds, rats, and human are 59.5%, 68.2%, 66.2% and 70.3%, respectively,
as calculated from the purine base distribution (purine–pyrimidine rule). The eighth row in Table 2 shows that the pro-
portion of exon segments with 70% length that fall within sections of the curve where a < 1 to total exon segments in the
analysed sections are 37.1%, 55.6%, 47.5% and 56.8%, respectively. Fig. 3 shows calculation results for the human gene
DNA sequences, according to purine distribution.

Sometimes consideration of the Hölder exponent curve calculated by purine distribution only cannot produce the
best results. Therefore, it is necessary to search other common characteristics of protein-coding segments to increase
the accuracy. Some studies suggest that coding sequences in genes tend to contain more G and C bases than non-coding
sequences, and that is particularly obvious in the DNA sequences of warm-blooded vertebrates [38–41]. This means that
the DNA sequence coding segments could also fall within sections where the Hölder exponent of the G and C base
distribution is less than one. For this reason, this study also calculates the Hölder exponent curves for G and C base
distribution for all DNA sequences. Fig. 4 shows some of these results. The ninth to eleventh columns of Table 1 sum-
marize in detail the data for the myosin heavy chain gene family, and the ninth to tenth rows of Table 2 summarize all
339 DNA sequences. The exon segments fit well with the Hölder exponent curve of G and C base distribution where the
Hölder exponent is less than one.

Because different species or different genes differ dramatically in base arrangement, it is sometimes not enough to
consider the Hölder exponent curve based on only one rule. Integrating different rules may be a good idea [42]. There-
fore, two rules mentioned previously can perhaps be combined to obtain more accurate results. Fig. 5 compares exon
segments, Hölder exponent curves for AG base distribution, and GC base distribution of several human DNA
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Table 1
Summary of local scaling analysis on myosin heavy chain genes family

Family
organism

GenBank
accession #
(locus)

Length
analysed
(bp)
(total length)

# of exon
segments

Total
exon
length
(bp)
(% exon
length)

%a < 1 in
analysis
(A + G)

%a < 1 in
exon
(A + G)

# of exon
segments
whose %a < 1 are
greater than 70
(# of exon
segments in
analysed region)
(A + G)

%a < 1 in
analysis
(G + C)

%a < 1 in
exon
(G + C)

# of exon
segments
whose %a < 1 are
greater than 70
(# of exon
segments in
analysed region)
(G + C)

# of exon
segments
whose %a
< 1 are
greater
than 70
(# of exon
segments
in analysed
region)
(A + G or
G + C)

Saccharomyces

cerevisiae

(yeast)

X53947 4889 1 6108 50.0 50.0+5.8 0 49.1 49.1+6.4 0 0
(SCMYO1G) (6108) (100) �5.7 (1) �4.8 (1) (1)

Caenorhabditis

elegans #3
(worm)

X08067 9285 7 5911 51.6 53.0+6.7 4 49.1 54.6+6.8 5 5
(CEMYO3) (11,604) (50.9) �7.8 (7) �6.6 (7) (7)

Brugia malayi

(worm)
M74000 9415 13 5598 52.3 64.8+5.6 6 51.7 69.3+5.1 6 7
(BRPMYOHEA) (11,766) (47.6) �6.1 (11) �5.4 (11) (11)

Drosophila

melanogaster

(fruit fly)

M61229 18,132 30 8024 52.2 67.7+5.6 12 52.2 85.8+2.6 21 23
(DROMHC) (22,663) (35.4) �6.2 (27) �3.7 (27) (27)

Gallus gallus

(chicken)
J02714 24,890 38 5823 50.9 75.8+4.5 28 49.2 90.8+2.1 31 36
(CHKMYHE) (31,111) (18.7) �5.2 (38) �2.9 (38) (38)

Rattus

norvegicus

(rat)

X04267 20,606 41 6015 50.1 72.8+2.6 21 54.4 80.8+3.8 24 31
(RNMHCG) (25,755) (23.4) �4.3 (34) �5.1 (34) (34)

Homo sapiens

(human)
M57965 22,752 40 6008 54.3 86.8+3.2 33 55.2 79.4+4.3 25 36
(HUMBMYH7) (28,438) (21.1) �4.1 (39) �4.9 (39) (39)
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Table 2
Summary of local scaling analysis on 339 DNA sequences of different species collected from GenBank

Species Caenorhabditis elegans Bird Rat Human

Number of sequences (including myosin heavy
chain gene family)

75 37 46 181

Total length of sequences 465,459 306,376 267,478 1,946,379
Total length analysed 372,514 245,171 214,068 1,557,435
Total number of exon segments 533 275 278 1340
Exon segments in the analysed sections 501 257 261 1171
Average matching rate (A + G) 59.5% 68.2% 66.2% 70.3%
Number and percentage of segments with the

matching rate over 70% (A + G)
186(37.1%) 143(55.6%) 124(47.5%) 665(56.8%)

Average matching rate (G + C) 71.8% 72.0% 68.7% 75.9%
Number and percentage of segments with the

matching rate over 70% (G + C)
323(64.5%) 157(61.1%) 142(54.4%) 794(67.8%)

Number and percentage of segments with the
matching rate over 70% (A + G or G + C)

361(72.1%) 204(79.4%) 204(78.2%) 1022(87.3%)
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Fig. 3. Comparison between actual sites of exon segments and Hölder exponent curve of purine distribution for (a) human proto-
oncogene gene, (b) human pyruvate kinase gene, and (c) human ENO3 gene.
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sequences. This figure indicates that some predictions on the exon segments of the DNA sequence using sections where
the Hölder exponent curve of the purine distribution is less than one are not very accurate. Yet these exon segments can
fit well with sections where the G and C base distribution’s Hölder exponent curve is less than one. The fifth column in
Table 2 shows that the 181 human genes have a total of 1171 exon segments. Of this, total 665 segments (56.8%) with
Please cite this article in press as: Su Z-Y et al., Local scaling and multifractal spectrum analyses of DNA ..., Chaos,
Solitons & Fractals (2007), doi:10.1016/j.chaos.2007.09.078



 
 
 
 
 
 
 
 
 
 
 
 

7000 9000 11000 13000
0.8

1.2

1.6

Holder exponent (G+C)

HSMPOG
(Human gene for the light and heavy chains of myeloperoxidase)

Exon

base position i
α

α
α

7000 9000 11000 13000
0.8

1.2

1.6

Holder exponent (G+C)

HUMHKATPC
( Human gastric H,K-ATPase catalytic subunit gene )

Exon

base position i

4000 6000 8000 10000
0.8

1.2

1.6

Holder exponent (G+C)

HUMCEL
( Human carboxyl ester lipase (CEL) gene )

Exon

base position i

a

b

c

Fig. 4. Comparison between actual sites of exon segments and Hölder exponent curve of GC bases distribution for (a) human gene for
light and heavy chains of myeloperoxidase, (b) human gastric H,K-ATPase catalytic subunit gene, and (c) human CEL gene.
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70% length fall within the sections where the purine distribution’s Hölder exponent curve is less than one and 794 seg-
ments (67.8%) with 70% length fall within the sections where the G and C base distribution’s Hölder exponent curve is
less than one. However, integrating the Hölder exponent curves for AG bases and GC bases shows that 1022 exon seg-
ments (87.3%) with 70% length fall within sections where the GC base or AG base distribution’s Hölder exponent curve
is less than one. Human myosin heavy chain genes have 36 exon segments with 70% length that fall within sections
where the GC base or AG base distribution’s Hölder exponent curve is less than one (see the twelfth column in
Table 1). This is more than the original 33 segments, which comes from considering AG base distribution only (see
the eighth column in Table 1).

As mention above, the coding sequences tend to appear in regions of the DNA sequence with abundant AG or GC
bases. In other words, the coding sequences tend to exist in DNA sequence regions with a scarcity of the T base. There-
fore, exon segments might be found within sections where the T base distribution’s Hölder exponent curve is greater
than 1. Fig. 6 compares the T base distribution’s Hölder exponent curve and exon segments in several human gene
DNA sequences. This figure shows that the exon segments of some human genes fit well with the a > 1 sites of the
T base’s Hölder exponent curve.

Many methods of bioinformatics about predicting genes or genetic sequences that can be coded into proteins have
recently been proposed. Despite the diversity of these approaches, none of the above methods is perfect. In order to
achieve a better prediction, it is sometimes necessary to integrate results from various programs. The GRAIL algorithm
[43], for example, collects various methods of analysis and determines regions for coding DNA sequences as its ‘‘sen-
sors’’ before applying a neural network to predict DNA coding segments: one sensor, among many others, is a fractal
dimension. The approach to find segments to be coded into proteins using the Hölder exponent curve proposed in this
study has the advantages of simplicity, less calculation and do not need specify any window size. Perhaps in the future,
this method can be integrated into GRAIL’s sensor, as the fractal dimension, to help other methods of bioinformatics.
Please cite this article in press as: Su Z-Y et al., Local scaling and multifractal spectrum analyses of DNA ..., Chaos,
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Fig. 5. Comparison between actual sites of exon segments and Hölder exponent curve of AG bases (thin line) and GC bases
distribution (thick line) for (a) human myosin heavy chain gene, (b) human Bat2 gene, (c) human heat shock protein gene, and (d)
human elongation factor gene.
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3.2. Multifractal spectrum analyses

Previous studies use two multifractal methods to study the structure of DNA sequences, including generalized
dimensions [44–49] and the multifractal spectrum [50,51]. This study focuses on the multifractal spectrum behavior
of DNA sequences only. Most researchers first transfer DNA sequences in DNA walk before calculating the multifrac-
tal spectrum, but this study does adopt this approach because it involves artificial correlation. Instead, the DNA
sequence is viewed directly as the set of the four letters of the alphabet (A, G, T and C). Further, different rules were
applied to calculate the probability that a certain kind of base falls into the box, and multifractal spectra are then cal-
culated using formulas mentioned before.

3.2.1. Application to myosin heavy chain gene

Fig. 7 illustrates the multifractal spectra (f(a) spectra) of the human cardiac b-myosin heavy chain gene, calculated
by different rules. In this diagram, A, T, G, and C stand for various single base rules, respectively, while G + C
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Fig. 6. Comparison between actual sites of exon segments and Hölder exponent curve of T distribution for (a) human myosin heavy
chain gene, (b) human cytokeratin 8 gene, and (c) human nucleolin gene.
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Fig. 7. Multifractal spectra of human cardiac b-myosin heavy chain genes under different rules.
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represents the hydrogen bond rule and A + G represents the purine–pyrimidine rule. All the f(a) curves have an inverted
and downward-opening parabolic shape; that is, the DNA sequence features a multifractal structure, but the opening of
the f(a) curve varies with different rules. For example, the a value of the purine distribution (A + G) is between approx-
imately 0.8 and 1.4.

To confirm this heterogeneity in base distribution, the positions of these bases are scrambled by a random scheme
(base pair numbers, A, G, T, and C, remain the same as those in the original sequence). Fig. 8 plots the resulting f(a)
spectra of the purine distribution and the result of original DNA sequences in the same figure. The crosses on the
Please cite this article in press as: Su Z-Y et al., Local scaling and multifractal spectrum analyses of DNA ..., Chaos,
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Fig. 8. Multifractal spectra for the purine distributions of human cardiac b-myosin heavy chain gene nucleotide sequence before and
after shuffling.
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symbols in the diagram stand for uncertainties in the values of a and f(a) arising from the least square fitting procedure
in Eqs. (6) and (7). A wider opening of the parabola in the diagram indicates that purine bases of original DNA
sequences before scrambling are not uniformly distributed along the human myosin heavy chain gene; rather, they tend
to form clusters of different sizes. After scrambling, a much smaller opening curve occurs, indicating that the base
sequence has a more uniform distribution. This implies that the DNA sequence base arrangement in the human myosin
heavy chain gene is far more complicated than any random sequence and carries considerable messages. The remaining
slight opening (a � 0.94 � 1.08) of the curve is perhaps due to the so-called ‘‘strand bias’’ (there are slightly more pur-
ines than pyrimidines in the myosin heavy chain gene) normally observed in genomes.

All introns are deleted, and the remaining exon segments of the human’s myosin heavy chain gene are stitched
together to form a shorter sequence containing protein-coding regions only. Fig. 9 gives the corresponding f(a) spectra
of purine distribution. Compared with the spectra of original DNA sequence in Fig. 8, a much narrower f(a) is
observed. Scrambling this shorter sequence produces little difference in f(a) (see Fig. 9), implying that the protein-coding
sequence has a more uniform and random-like base distribution than the original intron-rich sequence. This observa-
tion is consistent with previous findings based on the random-walk model, which state that long-range correlation is
associated with intron parts of DNA sequence.

Next, this study calculates the f(a) spectra of seven species DNA sequences in the myosin heavy chain gene family,
ranging from yeast to human (Homo sapiens). Fig. 10 shows the result of purine distribution in DNA sequence. Com-
paring the f(a) spectra obtained from the seven species in Fig. 10, the gradual opening of the f(a) curve indicates that the
purine distribution of DNA sequences of higher species is more uneven, irregular, and has more local clusters. These
variations suggest an increasing complexity in the structures of DNA sequences. Again, the degree of complexity fol-
lows the evolutionary order from fungus, invertebrates, vertebrates, to human. This result agrees with Table 1, which
reveals that higher species have more fragmented coding regions in their DNA sequences.
HUMBMYH7
HUMBMYH7(Scrambled)
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Fig. 9. Multifractal spectra of human cardiac b-myosin heavy chain gene with introns removed, before and after shuffling.
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Fig. 10. Comparison of multifractal spectra of myosin heavy chain genes among different species.

Z.-Y. Su et al. / Chaos, Solitons and Fractals xxx (2007) xxx–xxx 13

ARTICLE IN PRESS
The multifractal spectra of DNA sequences obtained by deleting all introns and stitching together the remaining
exon segments for the corresponding seven species are shown in Fig. 11. Comparing Figs. 11 and 10, the opening of
f(a) curves obtained from stitching together the remaining exon segments are much smaller than original DNA
sequences for most species, except yeast. This means that protein-coding sequences are much more evenly distributed
than the original sequence. In Fig. 11, the difference in the openings of all f(a) curves obtained from the seven species is
insignificant; suggesting the complexity of protein-coding sequences in DNA is almost the same among different species.

3.2.2. Application to mitochondria genome

The primary function of mitochondria is to convert oxygen and nutrients into adenosine triphosphate (ATP), so they
can be considered the power generators of cells. Because many species have this organelle, the DNA sequence of the
mitochondrion can also be used to study evolution using the multifractal spectrum. Fig. 12 shows the multifractal spec-
trum for the purine distribution of the human mitochondrion DNA sequence. The multifractal spectrum obtained from
the same sequence but with bases positions scrambled by using a random scheme is also provided for comparison, from
which it can be inferred that the disturbance does not have a considerable influence on the f(a) curve opening. This
phenomenon may be related to the fact that human mitochondrion DNA is extremely compact and contains no introns.
A comparison of multifractal spectra for the mitochondrion DNA sequences of different species, shown in Fig. 13,
shows that the openings of these f(a) curves are not wide, ranging from only 0.9–1.1. Considering the insignificant dif-
ference in opening size and error margins, it is clear that the order of opening size cannot be determined; i.e., degrees of
complexity in the structure of these DNA sequences are about the same. In fact, except for yeast, almost all the mito-
chondrion DNA sequences are of the same length and, quite different from the myosin heavy chain gene family, the
exon segments of higher species with inheritance messages do not scatter more widely along the DNA sequence. This
may account for the insignificant opening size difference in the f(a) curves. Mitochondrion DNA is derived from
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Fig. 11. Comparison of multifractal spectra of myosin heavy chain genes of different species with introns removed, before and after
shuffling.
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bacteria that were engulfed by early precursors of eukaryotic cells. In mammals and for most, but not all, organisms,
mitochondrion DNA is inherited from the mother. Unlike nuclear DNA in which the genes are rearranged each gen-
eration due to the process called recombination, there is usually no change in mitochondrion DNA from parent to off-
spring by this mechanism. Hence, the mitochondria genomes in animal cells show extensive homology in organization.
This may account for the insignificant difference in opening size of the f(a) curves for different species.
     
4. Conclusion

This study employed a multifractal formalism to investigate the fractal nature of DNA sequences. Phylogenetic
study of the spatial organization of nucleotide sequence collected and organized from GenBank was performed using
a local scaling and multifractal spectrum analysis technique. As for the multifractal spectrum f(a) of the myosin heavy
chain gene family, the familiar, inverted, downward-opening parabola curve shape is present. The finding demonstrates
the arrangement of bases in DNA sequence does exhibit a multifractal feature. The gradual opening of the f(a) curves
associated with different species suggests an increasing complexity in the structures of DNA sequences with evolution-
ary order. The widest opening f(a) of the parabola indicates that purine bases are not uniformly distributed along the
human myosin heavy chain gene; rather, they tend to form clusters of different sizes. Therefore, it may be possible to
determine the evolutionary level of an unknown genetic DNA sequence by considering the multifractal spectrum open-
ing. Unlike myosin heavy chain gene family, the openings of the f(a) curves for mitochondria DNA show insignificant
difference among different species. This indicates that the coding segments along the mitochondria DNA sequences of
higher species do not disperse widely; and different species share similar structural complexity in the mitochondria DNA
sequences.

The local scaling analysis of the myosin heavy chain gene family suggests that higher species have more fragmented
exon segments that take up a smaller portion of the whole sequence, and more exon segments fall within sections where
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the purine distribution’s Hölder exponent a is less than one; this is related to the phenomenon that base (purine or
pyrimidine) distribution in the DNA sequence of higher species tends to be uneven, irregular, and dense in local regions.
This result also agrees with the observed increase in the width of the f(a) curve openings for higher-level species. Fur-
thermore, analyzing 339 DNA sequences obtained from C. elegans, birds, rats, and humans show that there is also an
apparent tendency of increasing correlation between the exon locations in the sequence and sections where the purine
distribution’s Hölder exponent a is less than one with phylogenetic order. On the other hand, there are cases where cod-
ing sequences in genes tend to contain more G and C bases than non-coding sequences, and exon segments may also fit
well with the G and C base distribution’s Hölder exponent curve where the Hölder exponent is less than one. Therefore,
considering the Hölder exponent curve for either AG or GC bases distribution only may not achieve the best prediction
for coding segments. Simultaneously considering Hölder exponent curves calculated by adopting different rules, such as
the purine–pyrimidine rule and hydrogen bond rule, may have a complementary effect and can lead to a more accurate
prediction. The phenomenon that exon segments of higher species fall within sections where the purine distribution’s
Hölder exponent curve is less than one may be due to clustering pyrimidine in DNA sequence intron in the process
of evolution. While possible reasons for exon segments of higher species fall within sections where the Hölder exponent
curve of the GC base distribution is less than one (i.e., GC rich) include adaptation to elevated temperatures, active
gene transcription, mutation bias, or biased gene conversion (BGC) [41]. The present analysis substantiates the feasi-
bility of finding exon segments in DNA sequences using the local scaling exponent. Because the method is simple, with
less calculation work and dispenses with specifying window sizes. The authors hope that other more complicated bio-
informatics methods for analyzing DNA sequences can benefit from this study in the future.
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