嘉南藥理科技大學專題研究計畫成果報告

甲烷和二氧化碳於高周波電漿系統中催化反應之研究

計畫類別:個別型計畫 計畫編號: CNEV 91-28

執行期間:91年1月1日至91年12月31日

計畫主持人: 米孝萱 副教授 共同主持人: 王雅玢 助理教授

計畫參與人員:陳俊成

執行單位: 嘉南藥理科技大學環境工程衛生系

中華民國九十一年十二月卅日

嘉南藥理科技大學專題研究計畫成果報告

計畫名稱:甲烷和二氧化碳於高周波電漿系統中催化反應之研究

計畫編號: CNEV 91-28

執行期限:91年1月1日至91年12月31日

主持人: 米孝萱

計畫參與人員:王雅玢

嘉南藥理科技大學環境工程衛生系 嘉南藥理科技大學環境工程衛生系

一、中文摘要

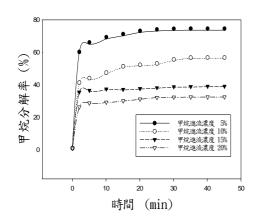
本研究針對甲烷氣體在高週波(RF)電漿系統中的分解反應進行研究。利用一個自行設計的高週波電漿反應器來進行實驗。實驗中藉由控制各種不同的操作參數,來進行電漿分解反應。而這些操作參數包括了反應氣體進流濃度、系統的操作壓力、進流氣體的總流量以及高週波的輸入功率。藉由不同的組合來求取最佳的轉化率和分解率。在以高週波電漿對甲烷進行分解反應的實驗中,當控制其操作條件在:甲烷進流濃度為5%,電漿反應器中的操作壓力為20Torrs,進流氣體的總流量為50sccm和高週波的輸入功率為120Watt時,可得到89.0%的最高甲烷分解率。

關鍵詞:高週波電漿、甲烷

二、緣由與目的

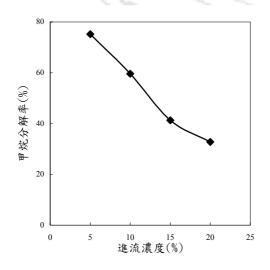
電漿技術在環境工程方面,已有許多學者將此 技術應用於廢氣或毒性物質的處理。低溫電漿是利 用氣體游離的原理,藉由電場使反應系統中的電子 加速變成一個具高能量的電子。而能與氣體分子行 非彈性碰撞,而使得氣流中的氣體分子被激發、活 化和解離成自由基,而這些高活性物種能克服傳統 化學上,因活化能太高,而無法進行的化學反應。

進而,可促使氣流中原本不易反應的氣相反應得以 進行。因此本研究選擇了甲烷,研討此物在電漿的 分解反應。 甲烷是自然界就中本來就存在的。而甲烷大量存在天然氣和生物產氣、石油的開採中。而本研究中想將甲烷轉化成具有較高分子量的化合物如乙烯(C₂H₂)乙炔(C₂H₄)乙烷(C₂H₆)等具有實驗價值的化合物。


對甲烷的分解,最早是著眼它是否可轉變為較 高碳數的實用化合物。

Gesser 曾在壓力 1atm 功率為 13kv 下將 CH4和 CO2以 1:1的比例流入寂靜放電反應器(Silent Discharge Reactor)進行反應。而它所得到的主要產物為 CO2,CH4,H2O,CO,H2。而 CH4 最高的轉化率為 45.1%,而 CO 的最高的生成率為 17%。

本研究將 CH4和載流氣體 Ar 分別經由質量流量控制器(Brooks 5850E)定量後,經過混合器導入包覆銅片外部電極之玻璃反應器中,調整輸入功率,在高週波產生器產生的電場下,將處於低壓狀態之混合氣體激發,產生電漿反應。反應前後之反應物及產物係利用傳利葉轉換紅外線光譜儀(Fouruer Transform Infrared Spectroscopy ,FTIR)加以定性及定量。並探討系統在不同的操作參數下對 CH4分解效率及轉化率的影響。


三、結果與討論

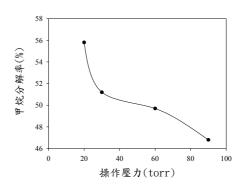
 改變 CH4進流濃度對 CH4分解率的影響 此階段的實驗條件: CH4進流濃度為5%、
 10%、15%、20%氣體的總流量為50 sccm、載流氣 體為 Ar、輸入功率50Watts 並加以探討在不同操 作壓力下(20、30、60Torr)的變化。如圖一所顯示, 其分解率在前三分鐘快速上昇,約在30分鐘後達 到平衡。

圖一、不同的進流濃度對 CH₄ 分解率的變化圖 (CH₄ 進流濃度為 5%·10%·15%·20%, 氣體的總流量為 50 sccm Ar、輸入功 50Watts)

而由圖二所知,當其壓力固定在20 Torr 時, 隨著CH4進流濃度的上升其CH4的分解率是下降 的。當CH4進流濃度為5%、10%、15%、20%時 其各別分解率為75.2%、59.6%、41.3%、32.8%。 而在壓力固定於30Torr,60Torr 時也是相同的趨 勢。

圖二. 固定操作壓力改變進流濃度對甲烷分解率的變化圖 (固定操作壓力 20torr,輸入功率 50watt,氣體總流量 50sccm)

探討其原因,在此階段氣體的總流量為50 sccm。隨著CH₄進流濃度的上升,其載流氣體Ar 的流量是下降的。而Ar在此反應中扮演的角色是 當作能量傳遞的媒介,當能量傳遞的媒介減少,相 對的也使的碰撞的機會減少。而使得能量的傳遞受 到了影響,而不利於 CH4的分解。


而 CH_4 的主要分解產物為乙烯 (C_2H_2) 乙炔 (C_2H_4) 乙烷 (C_2H_6) 而由 CH_4 轉化為 C_2H_2 、 C_2H_4 、 C_2H_6 量也是隨著 CH_4 進流濃度的上升而下降其原 因如上隨著 CH_4 進流濃度的上升其分解率下降而分解率下降代表的是有較多的 CH_4 未分解相對的由 CH_4 轉化為 C_2H_2 、 C_2H_4 、 C_2H_6 量也是隨著下降其結果見表一

表一.在固定操作壓力下,改變進流濃度.而使 CH_4 轉化成 C_2H_2,C_2H_4,C_2H_6 的變化表.

進流濃度 (%)	操作壓力 (torr)	C ₂ H ₂ 轉化 率(%)	C ₂ H ₄ 轉化率 (%)	C ₂ H ₆ 轉化率 (%)		
5	20	30	20	17		
10	20	19.4	18.7	15.1		
15	20	17.6	17.2	13.8		
20	20	16.6	15.7	11.5		
5	30	27.1	19.1	16.2		
10	30	19.8	17.8	14.6		
15	30	17.6	15.6	13.3		
20	30	16.1	15.1	11.2		
5	60	24	18.2	15.3		
10	60	19.8	17.4	13.6		
15	60	17.3	15.1	12.5		
20	60	14.9	14.6	10.8		

改變操作壓力對 CH4分解率的影響

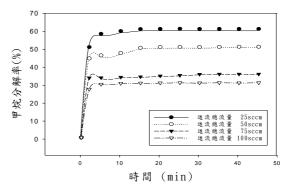
此階段的實驗條件: CH4 進流濃度為 10%, 氣體的總流量為 50 sccm, 載流氣體為 Ar,輸入功率 50Watt, s 並加以探討在不同操作壓力下(20、30、60、90Torr) 對 CH4 分解率的影響其實驗結果見圖三

圖三. 不同的操作壓力對甲烷分解率的變化圖 (CH4 進流濃度為 10%, 氣體的總流量為 50 sccm, 載流 氣體為 Ar,輸入功率 50Watt)

當操作壓力越高,其 CH4 分解率越低。這可 從氣體分子間的碰撞觀點來解釋,當操作壓力越 低,相對的在反應器中氣體分子的密度越小。這代表著氣體間的平均自由徑越大,而因平均自由徑越大,則自由電子所獲得的平均動能越大。反之,當其操作壓力越高,其自由電子所獲得的平均動能越小。而因為氣體分子的碰撞動能減少,而使得 CH4分解率下降。

改變操作壓力,對 CH_4 主要分解產物並無改變。顯示出改變操作壓力並不會造成產物型式的改變。而 CH_4 轉化為 C_2H_2 、 C_2H_4 、 C_2H_6 的量,隨著壓力的提昇也是下降的。(見表二)而從實驗結果得知,操作壓力越高其積碳越多。

表二. 在固定操作壓力下,固定進流濃度10%.而使 CH4轉化成 C2H2C2H4C3H6的變化表.

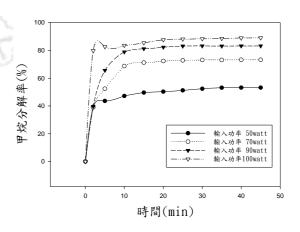

	The same of the sa				
輸入功率 (watt)	操作壓力 (torr)	C ₂ H ₂ 轉化率 (%)	C ₂ H ₄ 轉化率 (%)	C ₂ H ₆ 轉化率 (%)	
50	20	19.4	18.7	15.1	
70	20	19.8	18.9	13.9	
90	20	20.1	19.1	12.8	
120	20	20.5	15.6	10.2	
50	30	19.8	17.8	14.6	
70	30	20.1	18.0	13.8	
90	30	25.1	19.0	13.5	
120	30	26.3	17.1	9.9	
50	60	19.8	17.4	13.6	
70	60	29.8	17.9	13.2	
90	60	32.9	19.2	17.5	
120	60	34.5	17.3	6.8	

改變氣體流量對 CH4 分解率的影響

此階段的實驗條件: CH4 進流濃度為 10%, 氣體的總流量為 25-100 sccm 之間, 載流氣體為 Ar,輸入功率 50Watts,並在不同操作壓力下(20、 30、60Torr) 探討對 CH4分解率的影響。

由圖四中得知隨著操作時間的增加,CH4分解率也隨之上升。約在30分鐘左右,反應趨於平衡。在流量20sccm以及50sccm時,其分解率分別為60%和50%但是,當流量在75sccm以及100sccm之時,其分解率則是下降的。分別為35%和30%。針對此現象推論是,當操作壓力為固定時,進流氣體流量越大,表示 CH4及 Ar 通過電漿反應區域(Plasma Zone)之速度越快。當 CH4及 Ar 在電漿反應區之停留時間增長,時間增長則能夠吸收來自

RF 電場之能量愈多,因此由於獲得較多能量故所 能產生之分解效果會更明顯。因此氣體在反應器內 停留時間愈長,分解反應之進行亦較完全。



圖四. 不同的進流濃度對甲烷分解率的變化圖 (CH4 進流濃度為 10%,氣體的總流量為 25-100 sccm 之間,載 流氣體為 Ar,輸入功率 50Watts)

改變進流氣體流量對 CH_4 主要分解產物並無改變而 CH_4 轉化為 C_2H_2 、 C_2H_4 、 C_2H_6 的量隨著進流氣體流量的增加也是下降的歸究其原因如上段所述。

2. 改變輸入功率對 CH4 分解率的影響

此階段的實驗條件: CHA 進流濃度為 10%, 氣體的總流量為 50 sccm, 載流氣體為 Ar,操作壓力 20Torr,並加以探討在不同輸入功率下(50、70、90、120Watt) 對 CH4 分解率的影響其實驗結果見

圖五. 不同的輸入功率對甲烷分解率的影響 (CH4 進流濃度為 10%, 氣體的總流量為 50 sccm, 載流 氣體為 Ar,操作壓力 20Torr,並加以探討在不同輸入 功率下(50、70、90、120Watt)

就整體的分解率的趨勢,來看隨著輸入功率 的增加其分解率是增加的,而在 90watt 以上會有 積碳的情況產生。由於過多的碳沉積會使得 CH_4 轉化為 C_2H_2 、 C_2H_4 、 C_2H_6 的量,隨著積碳情況的 增加而減少。因此,選擇適當的輸入功率,避免過 多的積碳,並且符合所設定的去除率是很重要的。

從本實驗分析所得到的物種,在此嘗試的描述甲烷在高週波(RF)電漿中可能的分解路徑:

在 CH₄/Ar 電漿中其主要的組成成分有,

- 激發態的 Ar*CH₃、C₂H₃*、C₂H₅*、H *(*代表自由基物種)
- 分子態的 Ar 、CH₄ 、C₂H₄ 、C₂H₂ 、C₂H₆
- 3. e 、正離子、負離子

當 CH₄/Ar 混合氣體得到足夠的能量時,經由解離作用並受到激發態的 Ar* 和 e 撞擊或傳遞能量後,引發 CH₄/Ar 混合氣體的離子化過程,而氣體的離子化一直接受持續供應的電力,而使得反應不停的進行。

四、參考文獻

- 1. Cleland, T. A. and Hess, D. W. (1998), "In Situ FTIR Diagnostics of the Radio-Frequency Decomposition of N₂O" Plasma Chenistry and Plasma Processing, Vol. 7, No.4, PP.379~394.2.
- Gesser, H. D.; Hunter, N. R. and Probawono, D.(1998) "The CO₂ Reforming of Natural Gas in a Silent Discharge Reactor", Plasma Chemistry and Plasma Processing, Vol. 18, No. 2, PP. 241~245.
- Wang, Y. F., Lee, W. J., Chen, C. Y. and Hsieh,
 L. T., *Environ. Sci. Technol.*, Vol. 33, pp. 2234-2240, 1999a.
- Hsieh, L. T., Lee, W. J., Chen, C. Y., Wu, Y. P. G., Chen, S. J. and Wang, Y. F., *J. Hazard. Mater.*, Vol. 63,pp. 69-90, 1998a.
- Wang, Y. F., Lee, W. J., Chen, C. Y. and Hsieh, L. T., *Ind. Eng. Chem. Res.*, Vol. 38, pp. 3199-3210, 1999.
- Eliasson, B. and Kogelschatz, U., *IEEE Trans. Plasma Sci.*, Vol. 19, No. 6, pp. 1063-1077, 1991.7.
- 7. Boenig, H. V., Fundamentals of Plasma Chemistry and Technology, Thehnomic Publishing Co., Inc., 1988.
- 8. Hsieh, L. T., Lee, W. J. Chen, C. Y., Chang, M. B. and Chang, H. C. "Converting Methane by Using an RF Plasma Reactor", Plasma Chemistry and Plasma Processing, Vol.18,pp.215-239,1998.

- 9. Wang, Y.F.; Lee, W.J.; Chen, C.Y.; Hsieh, L.T., Decomposition of Dichlorodifluoromenthane by Adding Hydrogen in a Cold Plasma System. Environmental Science & Technology, Vol.33, pp. 2234-2240, 1999.
- 10. Wang, Y. F., Lee, W. J., Chen, C. Y., Wu, Y. P. Greg and Chang-Chien, G. P., Reaction Mechanisms in Both a CCl₂F₂/O₂/Ar and a CCl₂F₂/H₂/Ar RF Plasma Environment, Plasma Chemistry and Plasma Processing, Vol. 20, pp. 469-494, 2000.
- 11. Boschke, F.L., Topics in Current Chemistry, 107:Plasma Chemistry IV. Springer-Verlag Berlin Heidelberg, New York, 1983.
- 12. Capman, B. *Glow Discharge Processes*, Wiley, New York, 1980.
- 13. Biederman, H. and Osada, Y. Plasma Polymerization Processes, Elsevier Science Publishers, New York, 1992.