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Abstract: Objectives: Interactions between mechanical ventilation (MV) and carbapenem
interventions were investigated for the risk of Clostridium difficile infection (CDI) in critically ill
patients undergoing concurrent carbapenem therapy. Methods: Taiwan’s National Intensive Care Unit
Database (NICUD) was used in this analytical, observational, and retrospective study. We analyzed
267,871 intubated patients in subgroups based on the duration of MV support: 7–14 days (n = 97,525),
15–21 days (n = 52,068), 22–28 days (n = 35,264), and 29–60 days (n = 70,021). The primary outcome
was CDI. Results: Age (>75 years old), prolonged MV assistance (>21 days), carbapenem therapy
(>15 days), and high comorbidity scores were identified as independent risk factors for developing
CDI. CDI risk increased with longer MV support. The highest rate of CDI was in the MV
29–60 days subgroup (adjusted hazard ratio (AHR) = 2.85; 95% confidence interval (CI) = 1.46–5.58;
p < 0.02). Moreover, higher CDI rates correlated with the interaction between MV and carbapenem
interventions; these CDI risks were increased in the MV 15–21 days (AHR = 2.58; 95% CI = 1.12–5.91)
and MV 29–60 days (AHR = 4.63; 95% CI = 1.14–10.03) subgroups than in the non-MV and
non-carbapenem subgroups. Conclusions: Both MV support and carbapenem interventions
significantly increase the risk that critically ill patients will develop CDI. Moreover, prolonged MV
support and carbapenem therapy synergistically induce CDI. These findings provide new insights
into the role of MV support in the development of CDI.
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1. Introduction

Clostridium difficile (C. difficile) is widely known as a major causal agent of antibiotic-associated
colitis [1,2]. Despite current therapeutic options, C. difficile infection (CDI) has become one of the
most common causes of hospital-acquired infection [3]. A dramatic increase in the incidence and
severity over the past decades, especially in critically ill patients in intensive care units (ICUs), has
been reported [4–6]. Therefore, understanding the pathogenesis and avoiding the risk factors for CDI
are critically important for clinicians.

CDI is believed to be precipitated by antimicrobial therapy, the most significant risk factor [7,8],
which causes a disruption of the normal colonic microbiota; this disruption predisposes patients to
C. difficile intestinal colonization [9,10]. Old age, underlying chronic disease, recent hospitalization,
gastrointestinal surgeries, and tube feeds were also identified as risk factors associated with
C. difficile [6,11]. The pathogenesis of CDI is currently attributed to multifactorial disease processes: gut
microbial dysbiosis, pathogenic toxin production, and altered host inflammatory responses [9,12,13].
Recent reports highlighted that host immune system interactions with C. difficile, rather than
the C. difficile burden, might be important for determining disease processes and outcomes [14].
Indeed, an excessive host inflammatory response is believed to be crucial for the pathogenesis of
CDI [10,13,15,16].

To provide life support for critically ill patients in ICUs, mechanical ventilation (MV) assistance
is indispensable. However, clinicians must consider the development of ventilator-associated lung
injury (VALI) in patients with MV support [17,18]. Moreover, MV not only initiates lung injury and
inflammation, but it also leads to a spillover of the inflammatory mediators from the lungs into the
circulation, which propagates a systemic inflammatory response [19,20]. Significant inflammatory
responses of the lungs to mechanical stretching can also synergistically interact with a second insult,
e.g., exposure to microbial agents or systemic inflammation [21,22] that harms extrapulmonary organs.

MV support and antibiotic therapy might be the two most common interventions in ICUs.
However, the role and risk of MV assistance in developing CDI in critically ill patients are largely
unclear. MV has been established as a risk factor for the development of CDI in a few studies [23,24],
but MV was not a significant risk factor after potential confounders had been adjusted for [5]. Thus,
how and why MV support drives CDI is unknown; this also raises another question, i.e., whether MV
assistance interacts with antibiotic therapy to provoke CDI in the critically ill patients. We investigated
the risk factors for CDI and interactions between MV support and carbapenem therapy in critically ill
ICU patients.

2. Materials and Methods

2.1. Data Source

The NICUD, a sub-database of the Taiwan National Health Insurance Research Database (NHIRD),
was our data source. The NICUD contains information on all ICU patients from 1997 to 2013
and is based on the Taiwan National Health Insurance program, which covers almost 100% of
the population of Taiwan. Detailed information on inpatients and outpatients was obtained from
International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnostic
codes. All patients listed in the database are de-identified; thus, the Chi Mei Medical Center
Institutional Review Board exempted us from having to obtain patient consents.

2.2. Patient Selection

Throughout the study period, 2,415,207 patients had been admitted to ICUs. Because most
admitted patients were less than 18 years old, of unknown gender, or non-intubated, or CDI was coded
before ICU admission, which included MV support less than seven or more than sixty days, or died
within seven days after ICU admission, 2,147,336 were excluded. The remaining 267,871 patients were
screened, and 254,882 patients with MV support were enrolled (Figure 1).
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Figure 1. Data from the National Intensive Care Unit Database (NICUD), a sub-database of the 
Taiwan National Health Insurance Research Database (NHIRD), was used in this study. 

2.3. Measurements 

The main event in this study was CDI in ICU intubated patients with or without carbapenem 
therapy. Follow-up time was calculated from the ICU admission date of the ICU stay to date of death 
or date of developing CDI within three months after ICU admission. Demographic and clinical 
characteristics (age, gender, congestive heart failure (CHF) (ICD-9-CM: 398.91, 402.01, 402.11, 402.91, 
404.01, 404.03, 404.11, 404.13, 404.91, 404.93, 425.4–425.9, and 428), cerebrovascular accident (CVA) 
(ICD-9-CM: 436–438), chronic obstructive pulmonary diseases (COPD) (ICD-9-CM: 490–492, and 
496), liver disease (ICD-9-CM: 571), chronic kidney disease (CKD) (ICD-9-CM: 585), Charlson 
Comorbidity Index (CCI) score, days of MV support, and days of carbapenem (imipenem and 
meropenem)) therapy, were also estimated as potential risk factors for CDI. To examine the effect of 
MV support and antibiotics therapy on the risk of CDI, the interactions between MV support and 
antibiotics were also estimated. 

2.4. Statistical Analysis 

A t test for continuous variables and a χ2 test for categorical variables were used to compare the 
demographic data, underlying comorbidities, and CDI between patients who had and had not 
undergone MV. The risk of CDI between these two cohorts was estimated using Cox proportional 
hazard regression. To consider the possible effects of all confounding factors, the adjusted hazard 

Figure 1. Data from the National Intensive Care Unit Database (NICUD), a sub-database of the Taiwan
National Health Insurance Research Database (NHIRD), was used in this study.

2.3. Measurements

The main event in this study was CDI in ICU intubated patients with or without carbapenem
therapy. Follow-up time was calculated from the ICU admission date of the ICU stay to date of
death or date of developing CDI within three months after ICU admission. Demographic and clinical
characteristics (age, gender, congestive heart failure (CHF) (ICD-9-CM: 398.91, 402.01, 402.11, 402.91,
404.01, 404.03, 404.11, 404.13, 404.91, 404.93, 425.4–425.9, and 428), cerebrovascular accident (CVA)
(ICD-9-CM: 436–438), chronic obstructive pulmonary diseases (COPD) (ICD-9-CM: 490–492, and 496),
liver disease (ICD-9-CM: 571), chronic kidney disease (CKD) (ICD-9-CM: 585), Charlson Comorbidity
Index (CCI) score, days of MV support, and days of carbapenem (imipenem and meropenem)) therapy,
were also estimated as potential risk factors for CDI. To examine the effect of MV support and antibiotics
therapy on the risk of CDI, the interactions between MV support and antibiotics were also estimated.

2.4. Statistical Analysis

A t test for continuous variables and a χ2 test for categorical variables were used to compare
the demographic data, underlying comorbidities, and CDI between patients who had and had not
undergone MV. The risk of CDI between these two cohorts was estimated using Cox proportional
hazard regression. To consider the possible effects of all confounding factors, the adjusted hazard
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ratio (AHR) was calculated using Cox regression analysis with the adjustment for multiple variables,
including age, gender, MV assistance, antibiotics therapy, comorbidities and CCI scores. Subgroup
analyses for antibiotics therapy, MV assistance, duration of MV, and interaction of MV with antibiotics
were also performed. Finally, a forest plot was used to determine the risk of CDI for interactions
between the duration of MV assistance and antibiotics. Significance was set at p < 0.05 (two-tailed).
SAS 9.4 (SAS Institute Inc., Cary, NC, USA) was used for all statistical analyses.

3. Results

3.1. Demographic Data

A total of 267,871 intubated patients in ICUs were enrolled in this study, including MV patients
(n = 254,882) and controls without MV support (non-MV; n = 12,989). MV patients were subgrouped by
MV duration: 7–14 days (n = 97,525), 15–21 days (n = 52,068), 22–28 days (n = 35,264), and 29–60 days
(n = 70,021) (Figure 1).

Individual data in comparable distributions of MV cases and controls (non-MV) by age, sex,
carbapenem therapy, ICU days, comorbidities, CCI, and mortality (Table 1). The following variables
differed significantly between the MV and non-MV groups: patient age (69.1 vs. 63.7 years old,
p < 0.0001), female gender (37.9% vs. 43.4%, p < 0.0001), carbapenem therapy (30.8% vs. 10.6%,
p < 0.0001), ICU stay time (11 vs. 2 days, p < 0.0001), comorbidity and CCI scores (p < 0.0001).
The hospital and one-year mortality rates were also higher in the MV group than in the non-MV group
(34.0% vs. 32.9%, p = 0.0118, and 59.2% vs. 52.7%, p < 0.0001, respectively). CDI developed in 435 of
267,871 patients (0.16%); the MV group had a significantly higher rate of CDI than did the non-MV
group (0.17% vs. 0.07%, p = 0.0069) (Table 1).

Table 1. The characteristics of the enrolled patients in this study.

Characteristic Total
(n = 267,871)

MV
(n = 254,882)

Non-MV
(n = 12,989) p

Age (years): mean ± SD 68.8 ± 16.7 69.1 ± 16.5 63.7 ± 19.6 <0.0001
18–64 87,675 (32.73) 82,120 (32.22) 5555 (42.77) <0.0001
65–74 61,383 (22.92) 58,616 (23.00) 2767 (21.30)
≥75 118,813 (44.35) 114,146 (44.78) 4667 (35.93)

Gender
Female 102,217 (38.16) 96,574 (37.89) 5643 (43.44) <0.0001
Male 165,654 (61.84) 158,308 (62.11) 7346 (56.56)

Carbapenem in ICU † 79,779 (29.78) 78,397 (30.76) 1382 (10.64) <0.0001
ICU duration (days): median (IQR) 10 (6–17) 11 (6–17) 2 (1–5) <0.0001

Comorbidities
Congestive heart failure 15,687 (5.86) 15,037 (5.90) 650 (5.00) <0.0001

Cerebrovascular accident 27,633 (10.32) 26,331 (10.33) 1302 (10.02) 0.2621
Chronic obstructive pulmonary disease 43,935 (16.40) 42,181 (16.55) 1754 (13.50) <0.0001

Liver disease 20,097 (7.50) 18,935 (7.43) 1162 (8.95) <0.0001
Chronic kidney disease 12,706 (4.74) 12,110 (4.75) 596 (4.59) 0.3948

CCI: mean ± SD 1.9 ± 2.2 1.9 ± 2.2 1.7 ± 2.1 <0.0001
0 85,527 (31.93) 80,483 (31.58) 5044 (38.83) <0.0001

1–2 104,476 (39.00) 99,834 (39.17) 4642 (35.74)
≥3 77,868 (29.07) 74,565 (29.25) 3303 (25.43)

Hospital mortality 90,918 (33.94) 86,642 (33.99) 4276 (32.92) 0.0118
1-year mortality 157,846 (58.93) 151,002 (59.24) 6844 (52.69) <0.0001

Clostridium difficile infection ‡ 435 (0.16) 426 (0.17) 9 (0.07) 0.0069
† Including imipenem and meropenem; ‡ within 90 days after ICU admission. All data are expressed as n (%)
unless otherwise specified. Categorical variables, expressed as counts and percentages, were analyzed using a χ2

test. Variables with a normal distribution are expressed as mean ± standard deviation (SD), and were tested for
differences using Student’s t-test. Variables not normally distribution are expressed as median and interquartile
range (IQR) and differences tested using the Mann-Whitney U test. CCI: (Charlson Comorbidity Index).
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The AHRs of CDI were significantly higher with age ≥75 years old (AHR = 1.43;
95% CI = 1.12–1.83; p = 0.0041), prolonged MV support (22–28 days: AHR = 2.34, 95% CI = 1.17–4.68,
p = 0.017, and 29–60 days: AHR = 2.39, 95% CI = 1.21–4.69, p = 0.0117), carbapenem therapy more
than 15 days (AHR = 1.88; 95% CI = 1.54–2.30; p < 0.0001), and high comorbidity scores (CCI 1–2:
AHR = 1.62; 95% CI = 1.24–2.10; p < 0.0004, and CCI ≥ 3: AHR = 1.65; 95% CI = 1.22–2.24; p < 0.0012).
These variables were identified as independent risk factors for developing CDI (Table 2).

Table 2. Multivariate analysis for C. difficile infection in intubated ICU patients.

Variables Total Events (%) AHR * (95% CI) p

Age (years): mean ± SD
18–64 87,675 104 (0.12%) 1.00 (Reference) -
65–74 61,383 100 (0.16%) 1.20 (0.91–1.59) 0.2001
≥75 118,813 231 (0.19%) 1.43 (1.12–1.83) 0.0041

Gender
Female 102,217 172 (0.17%) 1.00 (Reference) -
Male 165,654 263 (0.16%) 0.95 (0.78–1.16) 0.6235

MV Support Duration (days)
None 12,989 9 (0.07%) 1.00 (Reference) -
7–14 97,529 126 (0.13%) 1.63 (0.83–3.20) 0.1595
15–21 52,068 67 (0.13%) 1.52 (0.76–3.06) 0.2377
22–28 35,264 73 (0.21%) 2.34 (1.17–4.68) 0.0168
29–60 70,021 160 (0.23%) 2.39 (1.21–4.69) 0.0117

Carbapenem Therapy Duration (days)
None 188,092 233 (0.12%) 1.00 (Reference) -
1–7 3678 11 (0.30%) 2.02 (1.10–3.10) 0.0227

8–14 10,616 15 (0.14%) 1.19 (0.72–2.01) 0.5117
≥15 65,485 176 (0.27%) 1.88 (1.54–2.30) <.0001

Comorbidities
CHF 15,687 35 (0.22%) 1.14 (0.80–1.63) 0.4676
CVA 27,633 53 (0.19%) 0.93 (0.69–1.25) 0.6116

COPD 43,935 79 (0.18%) 0.88 (0.68–1.14) 0.3378
Liver disease 20,097 34 (0.17%) 1.05 (0.73–1.51) 0.7896

CKD 12,706 33 (0.26%) 1.38 (0.95–2.02) 0.0902

CCI
0 85,527 89 (0.10%) 1.00 (Reference) -

1–2 104,476 192 (0.18%) 1.62 (1.24–2.10) 0.0004
≥3 77,868 154 (0.20%) 1.65 (1.22–2.24) 0.0012

* Adjusted hazard ratio (AHR); adjusted for age, sex, MV support days, duration of carbapenem therapy,
comorbidities, and Charlson Comorbidity Index (CCI).

3.2. Analysis of the Risk of Developing CDI with Interactions between MV Support and Carbapenem Therapy

Both carbapenem therapy and MV support were identified as risk factors for developing
CDI. Compared with the CDI risk in patients without carbapenem or MV intervention, the
AHRs for developing CDI were significantly higher with carbapenem therapy (AHR = 1.92;
95% CI = 1.59–2.32; p < 0.0001) and MV support (AHR = 2.19; 95% CI = 1.13–4.24; p = 0.0199) (Table 3).
Additionally, a progressive increase in CDI risk from the MV 22–28 days subgroup (AHR = 2.72;
95% CI = 1.36–5.44; p = 0.0046) to the MV 29–60 days subgroup (AHR = 2.85; 95% CI = 1.46–5.58;
p = 0.0023) correlated with prolonged MV assistance (>21 days) for developing CDI. Furthermore,
patients given carbapenem monotherapy (AHR = 1.99, 95% CI = 0.41–9.60, p = 0.3898) or MV support
(AHR = 1.94, 95% CI = 0.91–4.11, p = 0.0857) had nonsignificantly higher risks for CDI than did the
non-MV and carbapenem subgroups. In contrast, there was a significant increase of the risk in the
subgroup given both MV and carbapenem interventions (AHR = 3.64; 95% CI = 1.71–7.75; p < 0.0008)
(Table 3).
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Table 3. Subgroup analysis of the interaction between carbapenem therapy and mechanical ventilation
support for C. difficile infection in critically ill ICU patients.

Variables n Events (%) AHR * (95% CI) p

Carbapenem
No 188,092 233 (0.12%) 1.00 (Reference) -
Yes 79,779 202 (0.25%) 1.92 (1.59–2.32) <0.0001

Mechanical Ventilation
No 12,989 9 (0.07%) 1.00 (Reference) -
Yes 254,882 426 (0.17%) 2.19 (1.13–4.24) 0.0199

MV Support Duration (days)
None 12,989 9 (0.07%) 1.00 (Reference) -
7–14 97,529 126 (0.13%) 1.76 (0.90–3.46) 0.1013
15–21 52,068 67 (0.13%) 1.73 (0.86–3.48) 0.1219
22–28 35,264 73 (0.21%) 2.72 (1.36–5.44) 0.0046
29–60 70,021 160 (0.23%) 2.85 (1.46–5.58) 0.0023

MV, Carbapenem
No MV, no carbapenem 11,607 7 (0.06%) 1.00 (Reference) -

No MV, carbapenem 1382 2 (0.14%) 1.99 (0.41–9.60) 0.3898
MV, no carbapenem 176,485 226 (0.13%) 1.94 (0.91–4.11) 0.0857

MV, carbapenem 78,397 200 (0.26%) 3.64 (1.71–7.75) 0.0008

* Adjusted hazard ratio (AHR); adjusted for carbapenem therapy, mechanical ventilation (MV) support, and
interactions between the two events.

3.3. Analysis of Synergistic Interactions between the Duration of MV Assistance and Carbapenem Therapy
for CDI

A higher but nonsignificant CDI risk correlated with carbapenem monotherapy (Figure 2).
However, the CDI risks concurrent with MV and carbapenem interventions were significantly
higher in the MV 7–14 days (AHR = 3.15; 95% CI = 1.43–6.96) and MV 15–21 days (AHR = 2.58;
95% CI = 1.12–5.92) subgroups. The CDI rate was positively associated with prolonged MV duration
(>21 days) and concurrent carbapenem therapy.

J. Clin. Med. 2018, 7, x FOR PEER REVIEW  6 of 11 

 

carbapenem subgroups. In contrast, there was a significant increase of the risk in the subgroup given 
both MV and carbapenem interventions (AHR = 3.64; 95% CI = 1.71–7.75; p < 0.0008) (Table 3). 

Table 3. Subgroup analysis of the interaction between carbapenem therapy and mechanical 
ventilation support for C. difficile infection in critically ill ICU patients. 

Variables n Events (%) AHR * (95% CI) p 
Carbapenem 

No 188,092 233 (0.12%) 1.00 (Reference) - 
Yes 79,779 202 (0.25%) 1.92 (1.59–2.32) <0.0001 

Mechanical Ventilation 
No 12,989 9 (0.07%) 1.00 (Reference) - 
Yes 254,882 426 (0.17%) 2.19 (1.13–4.24) 0.0199 

MV Support Duration (days) 
None 12,989 9 (0.07%) 1.00 (Reference) - 
7–14 97,529 126 (0.13%) 1.76 (0.90–3.46) 0.1013 

15–21 52,068 67 (0.13%) 1.73 (0.86–3.48) 0.1219 
22–28 35,264 73 (0.21%) 2.72 (1.36–5.44) 0.0046 
29–60 70,021 160 (0.23%) 2.85 (1.46–5.58) 0.0023 

MV, Carbapenem 
No MV, no carbapenem 11,607 7 (0.06%) 1.00 (Reference) - 

No MV, carbapenem 1382 2 (0.14%) 1.99 (0.41–9.60) 0.3898 
MV, no carbapenem 176,485 226 (0.13%) 1.94 (0.91–4.11) 0.0857 

MV, carbapenem 78,397 200 (0.26%) 3.64 (1.71–7.75) 0.0008 
* Adjusted hazard ratio (AHR); adjusted for carbapenem therapy, mechanical ventilation (MV) 
support, and interactions between the two events. 

3.3. Analysis of Synergistic Interactions between the Duration of MV Assistance and Carbapenem Therapy 
for CDI 

A higher but nonsignificant CDI risk correlated with carbapenem monotherapy (Figure 2). 
However, the CDI risks concurrent with MV and carbapenem interventions were significantly higher 
in the MV 7–14 days (AHR = 3.15; 95% CI = 1.43–6.96) and MV 15–21 days (AHR = 2.58; 95% CI = 1.12–
5.92) subgroups. The CDI rate was positively associated with prolonged MV duration (>21 days) and 
concurrent carbapenem therapy. 

The difference between the 22–28 days MV subgroup (AHR = 3.84; 95% CI = 1.69–8.73) to the 29–
60 days MV subgroup (AHR = 4.63; 95% CI = 1.14–10.03) was significant (Figure 2). These results 
show the risk of developing CDI because of the synergistic interaction between prolonged MV 
support and concurrent carbapenem therapy. 

 
Figure 2. Forest plot of interacted results for the risk of C. difficile infection between the mechanical 
ventilation support and carbapenem therapy in critically ill ICU patients. 

  

Figure 2. Forest plot of interacted results for the risk of C. difficile infection between the mechanical
ventilation support and carbapenem therapy in critically ill ICU patients.

The difference between the 22–28 days MV subgroup (AHR = 3.84; 95% CI = 1.69–8.73) to the
29–60 days MV subgroup (AHR = 4.63; 95% CI = 1.14–10.03) was significant (Figure 2). These results
show the risk of developing CDI because of the synergistic interaction between prolonged MV support
and concurrent carbapenem therapy.
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4. Discussion

Our most important finding was that prolonged MV (>21 days) and prolonged carbapenem
therapy (>15 days) are independent predictors of CDI. One study [24] reported that the duration of
acute MV greatly influenced the development of CDI, and prolonged MV (>3 weeks) was associated
with a significantly higher (2–3 times) CDI risk (AHR: 2.72 for MV 22–28 days and AHR: 2.85 for MV
29–60 days) compared with patients without MV. Moreover, after prescribing carbapenem, synergistic
interactions between prolonged MV and carbapenem therapy resulted in a significant increase in CDI
risk (AHR: 3.84 for MV 22–28 days and AHR: 4.63 for MV 29–60 days). This is the first study to report
a synergistic interaction between MV and antibiotics therapy that resulted in an increased risk of CDI.
These findings provide novel insights and might support interactions between prolonged MV and
antibiotic therapy for the development of CDI.

A dramatic and significantly higher (2–4 times) incidence of CDI was reported in the past decade
in North America [25,26]. The reported incidence of CDI in North American and European ICUs is
0.4–4% of the ICU population [27]. We found that 435 of 267,871 (0.16%) critically ill patients developed
CDI. This was lower than the previously reported rate (14/1488 (0.9%)) in Taiwan [27]. However,
because of the different sample populations and different methodologies used, the incidence rate in
the present study might be reasonable.

After a multivariate analysis, elderly patients (>75 years old) (AHR: 1.43, p = 0.004) and patients
with prolonged MV (22–28 MV days (AHR: 2.34, p = 0.015), 29–60 MV days (AHR = 2.39, p = 0.0117)),
long-duration carbapenem therapy (>15 days (AHR = 1.88, p < 0.001)) and a high CCI were at a high
risk for developing CDI.

Advanced age is an established risk factor for CDI [28,29]. Indeed, age-related susceptibility to
CDI with a 2% increase in the rate every additional year after 18 years old was reported [7]. Multiple
interacting factors might be correlated with age in patients with CDI, such as comorbidities [30],
polypharmacy interactions [23], progressive immune dysregulation due to old age, and aging
accompanied by immune senescence with diminished antibodies against C. difficile toxins [31], which
leads to the high risk in elderly patients.

Antibiotic interactions are an important risk factor for developing CDI. Because almost any type
of antibiotic therapy can lead to this infection [10], carbapenem therapy, the last resort for treating
bacterial infections resistant to other available antibiotics, was evaluated in our study. Critically ill
patients might be treated with several antibiotics before beginning carbapenem therapy. Thus, patients
given carbapenem therapy might have advanced infections and prolonged inflammation.

A cumulative burden of comorbid illness assessment, based on the CCI with scores of 1 (moderate),
2 (severe), and ≥3 (very severe) [32], showed significant differences in the risk for CDI between these
three groups (p = 0.018). Consistent with other reports, the high CCI score was associated with a high
risk of developing CDI and sepsis [33–35], which led to CDI after antibiotic therapy.

Both prolonged carbapenem therapy and MV support were identified as independent risk factors
for developing CDI. Moreover, a longer duration of MV (>21 days) contributed to a higher CDI
risk with carbapenem therapy (AHR: 3.84 in the MV 22–28 days (AHR: 3.84) and MV 29–60 days
(AHR: 4.63)) compared with patients without MV and carbapenem interventions. These findings
provided important evidence of a synergistic interaction between MV and carbapenem therapy
that increases the risk of CDI. The specific mechanisms responsible for the synergistic interactions
between prolonged MV and carbapenem merit further investigation and might, in part, contribute to
several mechanisms, including: First, critically ill ICU patients with prolonged MV are primarily
the elderly with comorbidities and repeated episodes of shock and infection during their ICU
stay [36,37]. This condition was associated with persistent inflammation, immunosuppression, and
catabolism syndrome that resulted in an increased susceptibility to CDI [38,39]. Second, these patients
have more infections with virulent and resistant nosocomial pathogens. Nosocomial pneumonia is
the most important infectious disease in patients who require prolonged MV [39]. Prolonged MV
patients are more vulnerable to infections with virulent and resistant nosocomial pathogens that
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require long-term and broad-spectrum antibiotic treatment, which render patients more susceptible
to CDI [36,40]. Third, increased permeability and local neutrophilic infiltration of the gut by organ
crosstalk is suspected in prolonged MV patients. The release of inflammatory mediators followed by
increased neutrophilic infiltration and permeability of the gut are important for developing CDI [41–43].
Moreover, MV propagates systemic inflammatory responses, which results in neutrophil recruitment,
which, in turn, leads to distal organ damage [44]. Additionally, one study reported that increases
in plasma tumor necrosis factor-alpha after MV led to increases in gut permeability [45]. Indeed,
a crosstalk between the lungs and the gut during MV was reported [46]. Fourth, cooperation and
synergism between transcriptional factors and sensors of innate immunity between MV and CDI are
suspected. Synergistic interactions of bacterial products and MV, even in conventional tidal volumes,
for lung injury have been reported [47,48]. Indeed, cooperation and synergism for transcriptional
factors is currently thought to be the underlying molecular mechanism that causes the combined effect
of the two insults [22]. Mitogen-activated protein kinase (MAPK) pathways and nuclear factor kappa
B (NF-κB) activation contribute to inflammatory responses in CDI [49]. Interestingly, cell stretching
in MV can activate similar signaling pathways (MAPK, NF-κB) as CDI to produce proinflammatory
cytokines [22]. Moreover, activating the innate immune sensors, or pattern-recognition receptors
(Toll-like receptor family: TLR-2, TLR-4, and TLR-5), is important for developing CDI [16,50]. These
TLRs also contribute to the molecular mechanism of barotrauma in MV. Indeed, MV increased the
expression of TLR-2 both in the lungs and systemically after Staphylococcus aureus pneumonia was
reported in an animal study [51].

Limitations

Our study has some limitations. First, we identified CDI cases based on diagnostic codes provided
by physicians in an administrative database; however, there is a possibility of coding errors and
misdiagnoses. Second, some CDI variables, e.g., using proton pump inhibitors or tube feeds, and
the burden of C. difficile spores, were not recorded in the claims database; thus, we were unable to
assess the possibility of residual confounding factors. Third, we were unable to assess adherence to
the prescribed medications because the drug use data were not recorded in the claims database.

5. Conclusions

Patient age, carbapenem therapy, high CCI, and prolonged MV were identified as potential
risk factors for developing CDI by critically ill ICU patients. Moreover, prolonged MV interacted
synergistically with carbapenem therapy to induce CDI. Recognizing the causal relationship between
MV and CDI might be important for CDI therapy programs.
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