English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18034/20233 (89%)
造訪人次 : 23780458      線上人數 : 666
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/34605


    標題: Schizophyllum commune Reduces Expression of the SARS-CoV-2 Receptors ACE2 and TMPRSS2
    作者: Sun, Te-Kai
    Huang, Wen-Chin
    Sun, Yu-Wen
    Deng, Jeng-Shyan
    Chien, Liang-Hsuan
    Chou, Ya-Ni
    Jiang, Wen-Ping
    Lin, Jaung-Geng
    Huang, Guan-Jhong
    貢獻者: China Medical University Taiwan
    China Medical University Taiwan
    China Medical University Taiwan
    Asia University Taiwan
    Chia Nan University of Pharmacy & Science
    China Medical University Taiwan
    關鍵字: schizophyllum commune
    adenosine
    sars-cov-2
    ace2
    tmprss2
    日期: 2022
    上傳時間: 2023-12-11 14:00:23 (UTC+8)
    出版者: MDPI
    摘要: The current global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of COVID-19 has infected hundreds of millions of people, killed millions, and continues to pose a threat. It has become one of the largest epidemics in human history, causing enormous damage to people's lives and economies in the whole world. However, there are still many uncertainties and continued attention to the impact of SARS-CoV-2 on human health. The entry of SARS-CoV-2 into host cells is facilitated by the binding of the spike protein on the virus surface to the cell surface receptor angiotensin-converting enzyme 2 (ACE2). Furthermore, transmembrane protease serine 2 (TMPRSS2) is a host surface protease that cleaves and proteolytically activates its S protein, which is necessary for viral infection. Thus, SARS-CoV-2 uses the ACE2 receptor for cell entry and initiates the S protein using the protease TMPRSS2. Schizophyllum commune (SC) is one of the most widely distributed fungi, often found on the rotten wood of trees that has been found to have various health benefits, including anticancer, antimicrobial activity, antiparasitic, and immunomodulatory function. In this article, SC significantly diminished the expression ACE2 and TMPRSS2 protein in vitro and in vivo without cell damage. In addition, adenosine from SC was also proven in this experiment to reduce the ACE2 and TMPRSS2 expression. Thus, our findings suggest that SC and adenosine exhibit potential for the repression of SARS-CoV-2 infection via the ACE2 and TMPRSS2 axis.
    關聯: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.23, n.CB2, pp.CC2, pp.-,
    顯示於類別:[行政單位] 123

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML70檢視/開啟


    在CNU IR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋