Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/34419
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 18034/20233 (89%)
造访人次 : 24018620      在线人数 : 517
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/34419


    標題: Investigation and disinfection of bacteria and fungi in sports fitness center
    作者: Boonrattanakij, Nonglak
    Yomchinda, Sirikorn
    Lin, Fang-Jia
    Bellotindos, Luzvisminda M.
    Lu, Ming-Chun
    貢獻者: King Mongkuts Univ Technol Thonburi, Fac Engn, Dept Environm Engn
    Chia Nan Univ Pharm & Sci, Dept Environm Resources Management
    Univ San Carlos, Sch Engn, Talamban Campus
    Natl Chung Hsing Univ, Dept Environm Engn
    關鍵字: Fitness center
    Bioaerosols
    Disinfectant
    日期: 2021
    上傳時間: 2023-11-11 11:51:26 (UTC+8)
    出版者: SPRINGER HEIDELBERG
    摘要: This study investigated the air quality improvement in terms of bacterial and fungal contamination in an exercise room of a fitness center under normal operating conditions. Environmental conditions including air conditioning, ventilation, moisture, CO2, particulate matters, and total number of users were also recorded. In addition, fungal and bacterial load were assessed and disinfection on sports equipment surface was also examined. Background bacteria and fungi densities in bioaerosols were in the range of 249 +/- 65 to 812 +/- 111 CFU/m(3) and 226 +/- 39 to 837 +/- 838 CFU/m(3) in the exercise room of the fitness center and 370 +/- 86 to 953 +/- 136 CFU/m(3) and 465 +/- 108 to 1734 +/- 580 CFU/m(3) in the outdoor air, respectively. Chlorine dioxide and weak acid hypochlorous water aerosols could remove both bacteria and fungi much better than water scrubbing. Contact time of 15 min was sufficient to control both bacteria and fungi to comply with the official air quality standards. User density and carbon dioxide deteriorated both bacteria and fungi disinfection performance whereas temperature was only statistically significant on fungi disinfection. Other factors including relative humidity, airflow velocity, and particulate matters did not have any statistically significant effect on microbial inactivation. Apart from bioaerosol disinfection, inactivation of microorganisms on surfaces of sports equipment was also conducted using chlorine dioxide, zinc oxide, weak acid hypochlorous water, and commercial disinfectant. The surfaces of bicycle handle, dumbbell, and sit-up bench were found to be contaminated with bacteria. Overall bacterial load was 390 to 3720 CFU/cm(2) with Escherichia coli specifically 550 to 1080 CFU/cm(2). Chlorine dioxide and zinc oxide were noticeably better than weak acid hypochlorous water and commercial disinfectant in terms of bacteria inactivation whereas all tested disinfectants had comparable effectiveness on E. coli disinfection. Targeted microorganisms on the sports equipment surface were sufficiently inactivated within 2 min after the application of disinfectant.
    關聯: ENVIRON SCI POLLUT R, v.28, n.37, pp.52576-52586
    显示于类别:[環境資源管理系(所)] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML110检视/开启
    s11356-021-14323-5.pdf1733KbAdobe PDF45检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈