English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17019/19366 (88%)
Visitors : 2024612      Online Users : 489
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.cnu.edu.tw/handle/310902800/32289

    標題: Optimization and kinetics of the desulfurization of diesel fuel via high shear mixing oxidation assisted by adsorption of sulfones onto chitosan-coated bentonite
    作者: De Luna, Mark Daniel G.
    Futalan, Cybelle M.
    Duavis, Ayesha G.
    Wan, Meng-Wei
    貢獻者: Univ Philippines, Dept Chem Engn
    Dong A Univ, Natl Res Ctr Disaster Free & Safe Ocean City
    Univ Philippines, Natl Grad Sch Engn, Environm Engn Program
    Chia Nan Univ Pharm & Sci, Dept Environm Resources Management
    關鍵字: Adsorption
    box-behnken design
    fixed bed adsorption
    mixing-assisted oxidative desulfurization
    日期: 2018-12-08
    上傳時間: 2019-11-15 15:48:16 (UTC+8)
    摘要: Rapid increase in the worldwide consumption of fuel has resulted in environmental and health hazards arising from elevated concentrations of sulfur dioxide and sulfate particulate matter in the atmosphere. In this study, the reduction of the sulfur content in commercial diesel with an initial concentration of 1428 ppm was carried out via oxidative desulfurization (ODS) assisted by high shear mixing using hydrogen peroxide as oxidant and phosphotungstic acid as catalyst in combination with the fixed-bed adsorption of sulfur compounds onto chitosan-coated bentonite (CCB) and activated carbon (AC). The effects of mixing speed (8,000-12,000 rpm), oxidation temperature (60-80oC), and oxidation time (20-40 min) on sulfur removal were analyzed using the response surface methodology based on the Box-Behnken Design. Results show that the maximum sulfur removal of 81.97% could be attained at the following optimum conditions: 12,000 rpm, 80 degrees C, and 34 min. Fixed-bed studies illustrated that CCB (0.2 mm) has higher adsorption efficiency of 82.66% than AC of 63.24% in the removal of sulfones from diesel.
    link: http://dx.doi.org/10.1080/15435075.2018.1529587
    Appears in Collections:[環境資源管理系(所)] 期刊論文

    Files in This Item:

    File SizeFormat

    All items in CNU IR are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback