Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/31779
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 18034/20233 (89%)
造访人次 : 23625516      在线人数 : 701
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/31779


    標題: Ambient PM2.5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact
    作者: Hsu, Chin-Yu
    Chiang, Hung-Che
    Chen, Mu-Jean
    Chuang, Chun-Yu
    Tsen, Chao-Ming
    Fang, Guor-Cheng
    Tsai, Ying-I
    Chen, Nai-Tzu
    Lin, Tzu-Yu
    Lin, Sheng-Lun
    Chen, Yu-Cheng
    貢獻者: Natl Hlth Res Inst, Natl Inst Environm Hlth Sci
    Natl Tsing Hua Univ, Dept Biomed Engn & Environm Sci
    Agr Chem & Toxic Subst Res Inst, Council Agr, Residue Control Div
    Hungkuang Univ, Dept Safety Hlth & Environm Engn
    Chia Nan Univ Pharm & Sci, Dept Environm Engn & Sci
    Cheng Shiu Univ, Super Micro Mass Res & Technol Ctr
    China Med Univ, Dept Occupat Safety & Hlth
    關鍵字: Fine particle
    Source apportionment
    Chemical constituents
    Respiratory physician visits
    日期: 2017-07-15
    上傳時間: 2018-11-30 15:56:26 (UTC+8)
    出版者: Elsevier Science Bv
    摘要: This study systemically investigated the ambient PM2.5 (n = 108) with comprehensive analyses of the chemical composition, identification of the potential contributors, and estimation of the resultant respiratory physician visits in the residential regions near energy-consuming and high-polluting industries in central Taiwan. The positive matrix fraction (PMF) model with chemical profiles of trace metals, water-soluble ions, and organic/elemental carbons (OC/EC) was applied to quantify the potential sources of PM2.5. The influences of local sources were also explored using the conditional probability function (CPF). Associations between the daily PM2.5 concentration and the risk of respiratory physician visits for the elderly (>= 65 years of age) were estimated using time-series analysis. A seasonal variation, with higher concentrations of PM2.5, metals (As, Cd, Sb, and Pb), OC/EC and ions (i.e., NO3-, SO42- and NH4+) in the winter than in the spring and summer, was observed. Overall, an increase of 10 mu g m(-3) in the same day PM2.5 was associated with an similar to 2% (95% CI: 1.5%-2.5%) increase in respiratory physician visits. Considering the health benefits of an effective reduction, we suggest that the emission from coal combustion (23.5%), iron ore and steel industry (17.1%), and non-ferrous metallurgy (14.4%), accounting for similar to 70% of the primary PM2.5 in the winter are prioritized to control. (C) 2017 Elsevier B.V. All rights reserved.
    關聯: Science of The Total Environment, v.590, pp.204-214
    显示于类别:[環境工程與科學系(所)] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML1124检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈