English  |  正體中文  |  简体中文  |  Items with full text/Total items : 16823/19259 (87%)
Visitors : 7071159      Online Users : 606
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.cnu.edu.tw/handle/310902800/30510


    標題: Interactions between U-937 human macrophages and tyloxapol
    作者: Jo-wen Tseng(曾若雯)
    Jung-hua Steven Kuo(郭榮華)
    貢獻者: Graduate lnstitute of Pharmaceutical Science, Chia Nan University of Pharmacy and Science
    日期: 2008-07
    上傳時間: 2017-12-04 15:59:12 (UTC+8)
    摘要: Tyloxapol is reported to prevent macrophages from reacting to endotoxin. However, the intracellular responses that tyloxapol induces in macrophages are still not fully explored. Hence, the objective of this study was to evaluate the intracellular events in macrophages treated with tyloxapol and assess the antioxidant properties of tyloxapolin endotoxin-activated macrophages. Using flow cytometry, we examined intracellular responses in macrophages: reactive oxygen species (ROS) content, mitochondria membrane potential, and cell cycle profiles. We also assessed the antioxidant properties of tyloxapol in endotoxin-activated macrophages. Kinetic hydrogen peroxide production tended to decline with increasing doses. Tyloxapol produced a progressive increase followed by a decline in superoxide anion production in macrophages with increasing doses. Tyloxapol also caused unstable fluctuations in mitochondrial membrane potential. Apoptosis had developed at higher doses after 4h of incubation time. After 2 h of tyloxapol-pretreatment, tyloxapol acted as an antioxidant only at lower doses. Most tyloxapol-pretreated cells at lower doses fully recovered from the changes in superoxide anion and hydrogen peroxide production. Our findings contribute to a better understanding of the molecular action of tyloxapol in macrophages and how it protects macrophages against endotoxin.
    Appears in Collections:[藥學系(所)] 會議論文
    [藥理學院] 2008第五屆海峽化學、生物及材料研討會

    Files in This Item:

    File Description SizeFormat
    B08.pdf337KbAdobe PDF41View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback