English  |  正體中文  |  简体中文  |  Items with full text/Total items : 16823/19259 (87%)
Visitors : 7077288      Online Users : 573
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.cnu.edu.tw/handle/310902800/29686


    標題: Comparison of resistance improvement to fungal growth on green and conventional building materials by nano-metal impregnation
    作者: Huang, Hsiao-Lin
    Lin, Chi-Chi
    Hsu, Kunnan
    貢獻者: 職業安全衛生系
    關鍵字: Antifungal ability
    Aspergillus
    Penicillium
    Nano-metal
    Building material
    日期: 2015-11
    上傳時間: 2016-04-19 19:04:36 (UTC+8)
    出版者: Pergamon-Elsevier Science Ltd
    摘要: This study is aimed for comparing the biological resistance of green and conventional building materials (BMs) before and after nano-metal treatment, as well as exploring best nano-metals to improve fungal growth resistance of BMs. The selected BMs include wooden flooring (WF), green wooden flooring (GWF), gypsum board (GB), green gypsum board (GGB), calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC) and green mineral fiber ceiling (GMFC). The Aspergillus brasiliensis or Penicillium funiculosum was inoculated on each sample and their growth was visually evaluated according to ASTM G21-09.

    The fungal growth without nano-metals on test materials did not show that green materials were more prone to fungal growth. After nano-metal treatment, the observed order of fungal growth resistance of nano-metals at their highest selected concentrations on test materials was nano-zinc = nano-copper > nano-silver for WF and GWF, nano-zinc > nano-silver = nano-copper for GB, nano-zinc > nano-silver > nano-copper for GGB, CSB and GCSB, nano-silver > nano-copper = nano-zinc for MFC, and nano-silver > nano-copper > nano-zinc for GMFC. Nano-zinc seems to be the most favorable nano-metal for wood and wood composite materials. Green materials were less resistant to fungi attack relative to their conventional counterparts treated by nano-metals, particularly GWF and WF. All test nano-metals failed to provide complete protection against fungal growth on the eight test BMs at the selected concentrations. However, the higher the nano-metal concentration was, the longer the lag period until growth began and fewer fungi grew on the materials. (C) 2015 Elsevier Ltd. All rights reserved.
    Appears in Collections:[職業安全衛生系(含防災所)] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML285View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback