English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 18034/20233 (89%)
造訪人次 : 23370406      線上人數 : 521
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/29202


    標題: 泰國清邁地區乾燥季節大氣PM10微粒羧酸及離子特性研究
    Characterization of Carboxylic Acids and Ions Bound on PM10During Dry Season in Chiang Mai Area
    作者: Supapan Athirot
    貢獻者: 環境工程與科學系
    蔡瀛逸
    關鍵字: Biomass burning
    Biomass burning
    日期: 2014
    上傳時間: 2015-10-26 20:27:12 (UTC+8)
    摘要: The PM10 aerosol in Chiang Mai, Thailand was collected during 7 April - 1 May 2011 at an urban (Chiang Mai University: CMU) and a semi-urban site (Chiang Mai City Hall: CCH) on a 8 x 10 in Quartz Microfiber filters by using PM10 High Volume Air Samplers with flow rate of 1.13 m3 min-1. Characterization of carboxylates, anhydrosugars, sugars, sugar alcohols, organic carbon (OC), elemental carbon (EC), metals and inorganic species content and the provenance were investigated. The results show that the average concentrations of PM10 were 40.79.41 ?g m-3 at CMU site and 47.215.71 ?g m-3 at CCH site. At two sites, sulfate was the most abundant inorganic salts, at CMU site, sulfate emitted from biomass burning while at CCH site, sulfate emitted from traffic emissions. Acetate was the most abundant monocarboxylate and oxalate was the dominant dicarboxylates, indicate that carboxylates are formed by photochemical reaction and/or emitted directly from fossil fuel and biomass burning process. Levoglucosan, glucose and mannitol were the most dominant in anhydrosugars, sugars, and sugar alcohols, respectively. In nighttime found high concentration of levoglucosan, indicating that biomass burning contributed during in the nighttime. Most moderate/clear day and episode/clear day ratio more than 1, but it have some ratio less than 1 especially formate, it was reasonable because it easy to decomposed to be a CO2 by photochemical reaction. The acetate/formate (A/F) mass ratio was more than 1 (31.122.4 and 35.526.1 at CMU and CCH site, respectively), indicating that contributed from primary sources of biomass burning. The malonate/succinate (M/S) mass ratio was 1.31.56 at CMU site and 0.640.30 at CCH site, indicating that sources from traffic emissions. The levoglucosan/mannosan mass ratio was 23.07 at CMU site and 17.18 at CCH site, indicating that sources from biomass burning emitted from forest fire. OC/EC ratio were 5.33 and 11.4 at CMU site and CCH site, respectively, indicated source of PM10 from biomass burning. Iron (Fe) was found at CCH site more than CMU site, indicating at CCH site had emissions vehicle more than CMU site. Principle component analysis showed an accordant result indicated that biomass burning, crustal matter, traffic emissions, vehicle exhaust and heavy oil burning were mainly sources of PM10 in Chiang Mai.
    The PM10 aerosol in Chiang Mai, Thailand was collected during 7 April - 1 May 2011 at an urban (Chiang Mai University: CMU) and a semi-urban site (Chiang Mai City Hall: CCH) on a 8 x 10 in Quartz Microfiber filters by using PM10 High Volume Air Samplers with flow rate of 1.13 m3 min-1. Characterization of carboxylates, anhydrosugars, sugars, sugar alcohols, organic carbon (OC), elemental carbon (EC), metals and inorganic species content and the provenance were investigated. The results show that the average concentrations of PM10 were 40.79.41 ?g m-3 at CMU site and 47.215.71 ?g m-3 at CCH site. At two sites, sulfate was the most abundant inorganic salts, at CMU site, sulfate emitted from biomass burning while at CCH site, sulfate emitted from traffic emissions. Acetate was the most abundant monocarboxylate and oxalate was the dominant dicarboxylates, indicate that carboxylates are formed by photochemical reaction and/or emitted directly from fossil fuel and biomass burning process. Levoglucosan, glucose and mannitol were the most dominant in anhydrosugars, sugars, and sugar alcohols, respectively. In nighttime found high concentration of levoglucosan, indicating that biomass burning contributed during in the nighttime. Most moderate/clear day and episode/clear day ratio more than 1, but it have some ratio less than 1 especially formate, it was reasonable because it easy to decomposed to be a CO2 by photochemical reaction. The acetate/formate (A/F) mass ratio was more than 1 (31.122.4 and 35.526.1 at CMU and CCH site, respectively), indicating that contributed from primary sources of biomass burning. The malonate/succinate (M/S) mass ratio was 1.31.56 at CMU site and 0.640.30 at CCH site, indicating that sources from traffic emissions. The levoglucosan/mannosan mass ratio was 23.07 at CMU site and 17.18 at CCH site, indicating that sources from biomass burning emitted from forest fire. OC/EC ratio were 5.33 and 11.4 at CMU site and CCH site, respectively, indicated source of PM10 from biomass burning. Iron (Fe) was found at CCH site more than CMU site, indicating at CCH site had emissions vehicle more than CMU site. Principle component analysis showed an accordant result indicated that biomass burning, crustal matter, traffic emissions, vehicle exhaust and heavy oil burning were mainly sources of PM10 in Chiang Mai.
    關聯: 網際網路公開:2016-01-21,學年度:102,117頁
    顯示於類別:[環境工程與科學系(所)] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML1325檢視/開啟


    在CNU IR中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋