Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/26992
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 18054/20253 (89%)
造访人次 : 24095239      在线人数 : 502
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.cnu.edu.tw/handle/310902800/26992


    標題: Seasonal and rainfall-type variations in inorganic ions and dicarboxylic acids and acidity of wet deposition samples collected from subtropical East Asia
    作者: Tsai, Ying I.
    Hsieh, Li-Ying
    Kuo, Su-Ching
    Chen, Chien-Lung
    Wu, Pei-Ling
    貢獻者: 環境工程與科學系
    醫藥化學系
    關鍵字: Rainwater
    Wet precipitation
    Typhoon
    Chemical composition
    Dicarboxylic acids
    Oxalic acid
    Southern Taiwan
    日期: 2011-07
    上傳時間: 2013-10-16 09:08:51 (UTC+8)
    出版者: Elsevier
    摘要: Rainfall samples were collected over a period of 3 years and 8 months in subtropical East Asia. They are categorized into different rainfall types and analyzed to assess the ionic composition and its effect on the acidity of wet deposition in southern Taiwan. Only 4% of samples had a pH of <5.0, indicating that the study area is not impacted significantly by acid rain. The volume-weighted mean (VWM) pH by rainfall type was Spring Rain 5.74, Typhoon Rain 5.56, Summer Rain 5.46, Typhoon Outer Circulation (TOC) Rain 5.45, Plum Rain 5.32 and Autumn–Winter Rain 5.29. Dilution effects were important to the equivalent ionic concentration of different rainfall types. HCO3−, SO42− and Cl− were detected as major anions whereas NH4+, Na+ and Ca2+ were major cations. CO2-derived HCO3− was the major ionic species in all but Typhoon Rain and Spring Rain, in which the major species were Na+ and Cl− and Ca2+, respectively. Excluding HCO3−, the major species were NH4+, Na+ and Ca2+ in Plum Rain, the secondary photochemical products SO42−, NO3− and NH4+ in TOC Rain and Summer Rain, and Na+ and Ca2+ in Autumn–Winter Rain. Calculation of arithmetic means showed that dicarboxylic acids contributed between 0.25% and 0.53% of the total ionic concentration and of these, oxalic acid contributed the least (81.3% of the dicarboxylic acid) to TOC Rain and the most (96.1% of the dicarboxylic acid) to Spring Rain, suggestive of long-range transport in the latter. Differences in wet deposition composition were shown to be a result of differences in local emissions and long-range transport (hence of prevailing wind direction) during the period of rainfall and of the frequency and volume of rain that typifies each rainfall type. Principal component analysis (PCA) further revealed that traffic-related and industrial organic and inorganic pollutants, their secondary photochemical products, sea salts, and dust are important contributors to wet deposition. Moreover, the ratio of malonic acid to succinic acid (M:S ratio) indicated that both traffic and secondary photochemical reactions are major contributors to all but TOC Rain, for which the M:S ratio of 4.54 indicates a relative abundance of pollutants from secondary photochemical reactions. An ion balance (IB) ratio analysis demonstrated the validity of the results in this research.
    關聯: Atmospheric Environment, 45(21), pp.578-583
    显示于类别:[環境工程與科學系(所)] 期刊論文
    [食藥產業暨檢測科技系(含五專)] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML1821检视/开启


    在CNU IR中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈