Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/26820
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 18034/20233 (89%)
Visitors : 23709645      Online Users : 487
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    CNU IR > Chna Nan Annual Bulletin > Vol.38 (2012) >  Item 310902800/26820
    Please use this identifier to cite or link to this item: https://ir.cnu.edu.tw/handle/310902800/26820


    Title: 利用幾丁聚醣改質濾材於管柱中吸附與回收銅金屬之研究
    The Column Study of Copper adsorption and recovery in Aqueous Solution using Chitosan Modified Filter Media
    Authors: 陳煜斌
    楊惠玲
    甘其詮
    楊榮宏
    萬孟瑋
    Contributors: 嘉南藥理科技大學環境工程與科學系
    國立交通大學防災與水環境研究中心
    嘉南藥理科技大學溫泉產業研究所
    Keywords: 
    幾丁聚醣
    Thomas model
    吸附
    貫穿曲線
    Copper
    Chitosan
    Thomas model
    Adsorption
    Breakthrough curves
    Date: 2012-12
    Issue Date: 2013-08-14 10:42:02 (UTC+8)
    Abstract: 本研究利用具備生物可分解特色的生物高分子聚合物(Biopolymer)幾丁聚醣(Chitosan)結合不同自然物質來過濾含銅溶液,幾丁聚醣主要由幾丁質經去乙醯化所製成,且幾丁聚醣表面因具有胺基官能基故可與重金屬離子相互作用,進而形成吸附機制。本實驗以節省經濟成本為概念,將幾丁聚醣固化於不同天然物質形成吸附劑如:石英砂Chitosan Coated Sand (CCS)、膨潤土Chitosan Coated Bentonite(CCB)、高嶺土Chitosan Coated Kaolin(CCK)。此外,回收銅的實驗參數為流量5ml/min、吸附劑厚度3 公分、並配置不同之Cu2+濃度:200、1000ppm,在不同pH(3、4、5)下應用管柱實驗中比較吸附劑之吸附率,同時選擇最高吸附率之吸附劑進行反洗脫附實驗,並計算吸附貫穿時間與耗竭時間之濃度。
    研究結果得知,CCK、CCB、CCS 在pH3、Cu2+濃度為200、1000ppm 時對於銅離子去除率最佳,分別為 68.6%>58.9%>56.1%(200ppm) ; 56.23%>48.31%>45.11% (1000ppm) 。質量傳遞區(Zm) 分別為1.4<2.3<2.37 (200ppm);1.88<2.32<2.47 (1000ppm)。此外,應用Thomas model 實驗結果顯示、吸附劑R2 值均可達0.85 以上,且經由Thomas model 之預測曲線與實驗曲線亦可證明此三種吸附劑均有利於金屬吸附現象之發生。另外,在pH1 的狀態下進行脫附試驗,CCK 之脫附率可達82.13%以上,由證明Cu2+離子可經脫附作用回收,但由於CCK 的表面被強酸破壞,導致幾丁聚醣滲透於酸中,因而無法進行第二次吸附。
    Chitosan, a deacetylated product of chitin, is a well-known biopolymer that has high chelation capacity for heavy metals due to its functional amine groups. In this study, the removal of copper from aqueous solution using different adsorbents such as chitosan-coated bentonite (CCB), chitosan-coated kaolinite (CCK) and chitosan-coated sand (CCS) under fixed bed conditions was investigated. Under a constant flow rate of 5 mL/min and bed height of 3 cm, the effect of initial solution pH (pH 3 to 5) and initial concentration (200 and 1000 ppm) on the % Cu2+ removal, breakthrough time, exhaustion time and length of the mass transfer zone was examined. The % Cu2+ removal, breakthrough time and exhaustion time were observed to increase with decrease in initial concentration and lower pH. On the other hand, a shorter mass transfer zone is observed at lower initial concentration and pH.
    The results show that the best Cu2+ removal is obtained at pH 3, where the removal rate of CCK, CCB and CCS could be arranged in the order of: 68.6%> 58.9%> 56.1% and 56.23%> 48.31%> 45.11% at 200 and 1000 ppm, respectively. The length of the mass transfer zone (Zm) has the following values: 2.37 > 2.3 > 1.4 at 200 ppm and 2.47 > 2.32 > 1.88 at 1000 ppm for CCK, CCB and CCS. Under 200 and 1000 ppm, it is observed that CCK having the smallest value of Zm would lead to a better removal rate for Cu2+ in comparison to CCB and CCS. The Thomas model was applied to the experimental data in order to predict breakthrough curves and describe the dynamics of the fixed bed. Thomas model shows to be a good fit in describing the breakthrough curves under different pH and initial concentration, due to its high correlation coefficient values (R2 > 0.85). In addition, the experimental fixed bed data shows a good agreement with the predicted data derived from the Thomas model. Desorption studies were performed using HCl (pH=1) as a desorbing agent, where 82.13% Cu2+
    was recovered. During desorption, the CCK beads were observed to be damaged due to HCl solution causing the dissolution of chitosan. The kaolinite particles were observed to be washed out from the column, which prevents a second adsorption cycle to take place.
    Relation: 嘉南學報(科技類) 38期:p.193-202
    Appears in Collections:[Chna Nan Annual Bulletin] Vol.38 (2012)
    [Dept. of Environmental Engineering and Science (including master's program)] Periodical Articles
    [Dept. of Tourism Management] Periodical Articles

    Files in This Item:

    File SizeFormat
    38_193_202.pdf1240KbAdobe PDF2204View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback