English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17333/19639 (88%)
Visitors : 4843278      Online Users : 589
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.cnu.edu.tw/handle/310902800/22858

    標題: 台灣南部人工溼地蒸發散之特性
    The Evapotranspiration of Constructed Wetland in the Southern Taiwan
    作者: 吳潁祥
    貢獻者: 錢紀銘
    關鍵字: 人工溼地
    evaporation pan
    constructed wetland
    日期: 2009
    上傳時間: 2010-06-08 13:55:18 (UTC+8)
    摘要: 本研究主要以人工溼地之蒸發散特性變化為探討課題,並以彭門修正式(Penman modified equation; PMM)式與蒸發皿係數經驗式(Pan Factor method; PF)等蒸發散估算式檢驗其適用性,本研究設置二套系統;A系統係小型模場,包含:A1(FWS)系統種植香蒲、A2(SSF)系統種植蘆葦、A3(石頭床)無植栽系統,B系統則為總面積約達11,000 m2 大型實場(嘉南藥理科技大學校園人工溼地) 為印證嘉南藥理科技大學校園人工溼地氣象站(系統B)所觀測數據之可信度,本研究另收集中央氣象局南區氣象站(系統C)與嘉南藥理科技大學校園人工溼地氣象站(系統B)做基本統計與相關係數的比對。
    由相關結果發現,本研究觀測期間洽由冬末漸至夏初,由A1系統蒸發散之變化趨勢可發現其呈二階段變化,ET平均值為3.44cm/d。A1系統計算後PMM之平均絕對百分誤差(mean absolute percentage error; MAPE)為84,推估結果係無法接受。至於PF則為43,位於可接受範圍,若將其分為休眠期與生長期,則其值分別為30與60,顯示PF式較適用於FWS人工濕地休眠期蒸發散之推估。A2系統ET平均值為2.72cm/d,經PMM與PF推估後之MAPE分別為78與32,顯示PF式亦適用於SSF蒸發散之推估,若依休眠期與生長期分別計算,則其值為24.9與35.9,顯示PF式之休眠期蒸發散之推估精度較為準確。A3系統ET平均值為1.97cm/d,計算後PMM之MAPE為63,推估結果係亦無法接受。至於PF則為23,顯示PF式也適用於SSF蒸發之推估。B系統ET平均值為3cm/d,經計算後PMM與PF之MAPE分別為66.3即64.6,顯示彭門修正式與PF式對B系統人工濕地蒸發散之推估結果皆無法接受。
    This research mainly investigates the characteristic of the evapotranspiration (ET) of the constructed wetland (CW) in the southern Taiwan. The empirical estimation equations of ET, Penman modified equation (PMM), and Pan Factor method (PF) were also employed to examine their precision. Two small-scale systems, system A and system B, were established to measure ET. System A includes three subsystems which were composed of different type of constructed wetland, free water surface constructed wetland (FWS, system A1) with cattails, subsurface constructed wetland (SSF, system A2) with reeds, and SSF without plants (system A3). A large-scale CW, system B nearly reaches 11,000m2, located in the campus of Chia-nan University of pharmacy and science. To confirm the data quality of system B, meteorological data from southern region weather center of central weather bureau(system C) was also collected.
    From the results obtained, the average of ET of system A1, A2, A3, and B were 3.44cm/d, 2.72cm/d, 1.97cm/d, and 3cm/d. It showed that the type of CW and aquatic plant affected ET. To evaluate the precision of PMM and PF in estimating ET for different systems, a parameter (mean absolute percentage error; MAPE) was used. From the results of MAPE, the estimate of PF was acceptable for system A1 and A2. The rest implies a need of modification. The modified coefficients, CPMM for PMM and CPF for PF, were introduced to PMM and PF. From the processes of SPSS, these coefficients were found to be CPMM=7.19 and CP=1.47 which improve the precision of ET estimation of PMM and PF.
    關聯: 校內外均一年後公開 ,學年度:97,94 頁
    Appears in Collections:[環境工程與科學系(所)] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in CNU IR are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback