English  |  正體中文  |  简体中文  |  Items with full text/Total items : 17524/19853 (88%)
Visitors : 6495317      Online Users : 672
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.cnu.edu.tw/handle/310902800/22371

    標題: 資料探勘在文化創意產業之運用初探
    Data Mining Applications on Cultural Create Industries
    作者: 葉仲超
    貢獻者: 文化事業發展系
    關鍵字: 資料探勘
    data mining
    cluster analysis
    association rules
    cultural create industries
    日期: 2009-05
    上傳時間: 2010-03-03 11:41:56 (UTC+8)
    摘要: 資料探勘發展至今已成功運用到各種產業領域中,基於此,本研究將以資料探勘技術應用在文化創意產業來進行知識探索,說明運用此技術在產業的最新趨勢,過去政府對文化創意產業的分類乃延用傳播、出版、電視以及廣告等產業特性,共分十三大類產業特質,唯近年來文化創意產業的發展隨大環境改變之際,本研究認為可以運用資料探勘技術,重新檢視產業特質,透過選定的演算技術—群集分析,蒐集大量資料後,進行分析以尋找有用資訊,發現所隱含的、規律的且又潛在有用的產業特性,期能提供政府單位在日後進行產業特性分類時參考以及後續決策支援之用。
    Data mining and knowledge discovery from databases receive a lot of attentions and have been successfully applied to many areas. However, in cultural industries are rarely research subject, hence, this research introduces an application of data mining technologies on this industries. Using the decision tree, association rules and cluster analysis to analysis the current cultural creative industries companies preference and satisfaction in the market. The proposed methodology with data mining algorithm is to understand the similarities and dissimilarities among a set of market elements of specific in companies and to recommended for government.
    關聯: 2009年嘉南藥理科技大學文化事業學術研討會 ,起迄日:2009/5/21,地點:嘉南藥理科技大學
    Appears in Collections:[文化事業發展系] 會議論文

    Files in This Item:

    File Description SizeFormat
    98cul_3-2.pdf522KbAdobe PDF1400View/Open

    All items in CNU IR are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback