Chia Nan University of Pharmacy & Science Institutional Repository:Item 310902800/21998
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 16714/19009 (88%)
Visitors : 5706332      Online Users : 83
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.cnu.edu.tw/handle/310902800/21998


    Title: Approximation Theorems of the Empirical Distribution of the Sample Mean For Φ -Mixing Random Vectors
    Φ-混合隨機向量樣本平均之近似理論
    Authors: Bih-Sheue Shieh
    Sheng-Kai Yang
    Contributors: 資訊管理系
    化妝品應用與管理系
    Keywords: weakly dependent random vectors
    invariant principle
    law of iterated logarithm
    Φ -mixing
    弱相關隨機向量
    不變原則
    對數反覆律
    Φ-混合
    Date: 2003
    Issue Date: 2010-03-24 16:45:17 (UTC+8)
    Abstract: Let {Xi:-∞I<i<∞} be a Φ-mixing stationary sequence of random vectors. Let Fn(x) be the corresponding empirical distribution function of X1,…,Xn,and let X ,be the sample mean of the present investigation is to show that the asymptotic almostsure representation of Fn(X). Two different orders of the remainder term,under different Φ-mixing conditions, are obtained and used for proving functional central limit theorrms, laws of iterated logarithm, Wiener processes embedding and invariant principles for Fn(X).
    Relation: 嘉南學報 28期 : p.44-52
    Appears in Collections:[Chna Nan Annual Bulletin] No.28 (2002)
    [Dept. of Information Management] Periodical Articles
    [Dept. of Cosmetic Science and institute of cosmetic science] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    v28_44_52_摘要.pdf136KbAdobe PDF261View/Open


    All items in CNU IR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback