Application of the Aluminum Reagents in Enantioselective Arylation of Aldehydes

Shuangliu Zhou and Han-Mou Gau*

Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan

Abstract

The catalytic asymmetric aryl addition of aldehydes has attracted much attention because the chiral diaryl alcohols are important intermediates to many biologically active compounds. After the asymmetric addition of diphenylzinc to aldehyde, [1] the mixed reagents of Ph₂Zn/Et₂Zn^[2] and arylboronic acid/Et₂Zn^[3] as aryl sources were developed to improve the enantioselectivity of the aryl transfer. Recently we have reported asymmetric additions of AlAr₃(THF) to aldehydes^[4] or ketones^[5] catalyzed by the titanium(IV) complexes of (*R*)-H₈-BINOL or (*S*)-BINOL. In this study, we develop a series of arylaluminum reagents for asymmetric arylation to aldehydes. The aluminum reagents include AlPh₃(OEt₂), AlPh₃(DMAP), AlPh₃(OPPh₃), AlEtPh₂(DMAP), AlEtPh₂(OPPh₃), and AlEt₂Ph(THF). AlEt₂Ph(THF) in solution is actually a mixture of AlEt₃(THF), AlEt₂Ph(THF), AlEt₂Ph(THF), and AlPh₃(THF). Distillation of the above mixture gave AlEt₃(THF) and AlPh₃(THF). The asymmetric additions of the aluminum reagents to 1-naphthaldehyde were studied. Results showed that the supplemental ligands have a strong influence on the reactivity and enantioselectivity in the asymmetric arylation reactions.

References:

- [1] Dosa, P. I.; Ruble, J. C.; Fu, G. C. J. Org. Chem. 1997, 62, 444.
- [2] Bolm, C.; Hermanns, N.; Hildebrand, J. P.; Nuniz, K. *Angew. Chem., Int. Ed.* **2000**, 39, 3465.
- [3] Bolm, C.; Rudolph, J. J. Am. Chem. Soc. 2002, 124, 14850.
- [4] Wu, K. H.; Gau, H. M. J. Am. Chem. Soc. 2006, 128, 14808.
- [5] Chen, C. A.; Wu, K. H.; Gau, H. M. Angew. Chem., Int. Ed. 2007, 46, 5373.