台南地區幼兒園室內環境 VOCs 之特徵及風險評估

計畫主持人：環境永續學院 陳健民 教授兼院長

摘要

本計畫係以台南地區兩處幼兒園之室內外空氣品質進行相關探討，選定分析之物種主要以揮發性有機物為檢測與分析之對象。由於揮發性有機物之產生來源相當廣泛，為使分析之結果具備危害風險特性，將檢測分析所得之結果以風險評估分析方法進行解析及討論。本研究結果顯示，此兩處幼兒園之室內外環境受污染之情形均不甚明顯，同時也均低於我國環保署公佈之室內空氣品質標準中，VOCs 之管制限值。顯示幼兒園室內外環境並無明顯危害風險與風險因子，同時也顯示此二處幼兒園相關關注室內空氣品質之管理與維持。在分析之 VOCs 物種中，僅 Acetone 之濃度有測定出濃度數值，其餘物種均低於檢測極限值。採樣分析之數據顯示其 Acetone 之濃度介於 3.20~5.40 ppb，平均值為 4.08 ppb。這兩處之污染暴露風險均相當低，已至可忽略之數值以下。

關鍵字：幼兒園，揮發性有機物，風險評估，室內空氣品質。

一、前言

生活在物質充裕的我們，比起過去科技尚未開發的時代，人類所面對的疾病威脅並未遇到科技進步而減少，反而面臨更多疾病與病變的脅迫，造成如此現況歸咎於工業與科技所帶來的負面影響。人類的生活及生產活動多發生於日間，造成人體傷害的污染物多在此時段產出，其中包括二氧化碳、一氧化碳、臭氧、粉塵、揮發性有機化合物及甲醛...等，更多有害物質散布於室內中。室內環境中所存在的空氣污染物大致上可依其污染物特性分類為：粒狀污染物、氣狀污染物及生物性氣膠三大類。目前主要污染物有：一氧化碳、二氧化碳、甲醛、揮發性有機物質、臭氧、粒狀污染物、生物性氣膠(真菌、細菌等)。

大多人每天在不同的室內地點活動及居處的時間高達90%，隨著居住建築的需求日益複雜，空調系統、各種裝修材料的使用，衍生更多的室內空氣污染源，導致建築物內的空間使用者經常性的發生頭痛、鼻子過敏、眼睛發紅、打噴嚏...
流鼻水等症狀，而離開該環境後症狀會減輕或消失，這樣的建築被稱為「病態建築」（Sick Building），而由病態建築因發的各種症狀被稱為「病態建築症候群」（Sick Building Syndrome, SBS）。人體每日吸入的空氣量遠多於食物的攝取量，空氣品質對人體健康具有相當的影響，除了引發呼吸相關疾病的可能，對健康更可能造成無法挽回的永久性傷害，對於身體機能未發展齊全的幼童造成的影響更劇。

本研究為瞭解室内外空氣品質可能受影響之原因為何，同時健康干擾因子對幼童生活環境衝擊之程度，因此依針對台南地區兩處私立幼兒園之室內外進行揮發性有機物之檢測與分析，同時探討兒童暴露於此 VOCs 環境下之危害風險。

二、研究方法

本研究採用空氣中揮發性有機化合物檢測方法－不銹鋼採樣筒/氣相層析質譜儀法，將先抽真空之不銹鋼採樣筒以瞬間吸入或固定流量採集方式收集空氣中揮發性有機化合物，利用冷凍捕集方式濃縮一定量的空氣樣品再經熱脫附至氣相層析注入口前端再次冷凍聚焦，最後注入氣相層析質譜儀（GC/MS）中測定樣品中揮發性有機化合物的含量。

（一）採樣裝置

1. 採樣器：可以定流量（0 至 200 mL/min）進行常壓或高壓採樣的裝置
2. 限流裝置：可適當控制流量之裝置，如針閥、小孔流量計等。
3. 不銹鋼採樣筒：其內壁經塗矽去活化處理，或相同等級處理者，容積有 1、6 或 15 L 或其他容積等規格。
4. Canister 清洗系統：包括不銹鋼採樣筒清洗、濕化、測漏及抽取真空等功能之自動清洗系統裝置，或參考自行組裝如圖一，其中之真空泵為能抽不銹鋼採樣筒至真空度 5×10^-2 mmHg 絕對壓力以下者。
5. 濕化器：壓縮水泡產生器或其他可以供應溼度之設備。
6. 真空壓力計：能顯示真空度達 10^-3 mmHg 者。
7. 流量控制器與乾式流量計：能控制氣體流量範圍涵蓋 0 至 100 mL/min 及顯示進樣體積，如使用質量流量控制器則毋須搭配乾式流量計。
8. 不銹鋼真空/壓力計：能量測 0 至 760 mmHg 真空及 0 至 30 psig 壓力，使用前應先清洗乾淨及氣密。
9. 粒狀物過濾器：孔徑小於 10 μm（含）以下之過濾器。
10. 加熱裝置：可加熱至 100℃，用來加熱清洗不銹鋼採樣筒用。
（二）儀器設備

1. 氣密式注射針筒：如 1.0 mL 至 1000 mL
2. 液體注射針筒：100 mL。
3. Nafton 除氫裝置(選擇性配備，不適用於極性化合物)與具相同功能之除氫裝置（須注意極性化合物之干擾）。
4. 熱脫附冷凍裝置：需具有可調控溫度功能，可內置或外接型。設定條件參考如下：

<table>
<thead>
<tr>
<th>參數名稱</th>
<th>異構名稱</th>
<th>温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>管線溫度</td>
<td>(Line Temp)</td>
<td>200 ℃</td>
</tr>
<tr>
<td>注射閥溫度</td>
<td>(Valve Temp)</td>
<td>200 ℃</td>
</tr>
<tr>
<td>去氫裝置溫度</td>
<td>(MCS Line Temp)</td>
<td>200 ℃</td>
</tr>
<tr>
<td>捕集阱預備溫度</td>
<td>(Trap Standby)</td>
<td>30 ℃</td>
</tr>
<tr>
<td>樣品預備溫度</td>
<td>(Sample Standby)</td>
<td>窒溫 ℃</td>
</tr>
<tr>
<td>捕集阱冷卻溫度</td>
<td>(Trap Cooldown)</td>
<td>-160 ℃</td>
</tr>
<tr>
<td>樣品掃描時間</td>
<td>(Sample Sweep)</td>
<td>1min</td>
</tr>
<tr>
<td>樣品脫附時間</td>
<td>(Sample Desorb Time)</td>
<td>4.00 min</td>
</tr>
<tr>
<td>樣品脫附溫度</td>
<td>(Sample Desorb Temp)</td>
<td>250 ℃</td>
</tr>
<tr>
<td>捕集阱脱附時 MCS 温度</td>
<td>(MCS Desorb Temp)</td>
<td>50 ℃</td>
</tr>
<tr>
<td>GC 啟動</td>
<td>(GC Start)</td>
<td>Desorb End</td>
</tr>
<tr>
<td>冷凍濃縮開關</td>
<td>(Cryo Focusing)</td>
<td>on</td>
</tr>
<tr>
<td>GC 執行時間</td>
<td>(GC Cycle Time)</td>
<td>46.33 min</td>
</tr>
<tr>
<td>冷凍預備溫度</td>
<td>(Cryo Standby)</td>
<td>200 ℃</td>
</tr>
<tr>
<td>冷凍濃縮溫度</td>
<td>(Cryo Focusing Temp)</td>
<td>-170 ℃</td>
</tr>
<tr>
<td>冷凍注射溫度</td>
<td>(Cryo Inject Temp)</td>
<td>225 ℃</td>
</tr>
<tr>
<td>脫附預熱溫度</td>
<td>(Desorb Preheat)</td>
<td>220 ℃</td>
</tr>
<tr>
<td>捕集阱脱附時間</td>
<td>(Trap Desorb Time)</td>
<td>4.00 min</td>
</tr>
<tr>
<td>捕集阱脫附溫度</td>
<td>(Trap Desorb Temp)</td>
<td>250 ℃</td>
</tr>
<tr>
<td>樣品烘燒溫度</td>
<td>(Sample Bake)</td>
<td>250 ℃</td>
</tr>
<tr>
<td>烘焙時間</td>
<td>(Bake Time)</td>
<td>10.00 min</td>
</tr>
<tr>
<td>捕集阱烘燒溫度</td>
<td>(Trap Bake Temp)</td>
<td>250 ℃</td>
</tr>
<tr>
<td>去氫裝置烘燒溫度</td>
<td>(MCS Bake Temp)</td>
<td>340 ℃</td>
</tr>
</tbody>
</table>

5. 分離管柱：毛細管柱內徑 0.25~0.32 mm，長 50~60 m，膜厚約為 1.8 mm 之熔融石英毛細管柱，如 DB-1、DB-5、DB-624 或其他具相同分離效果者。

6. 氣相層析儀：氣相層析儀系統必需有可供溫度昇溫程式設定功能，需有流量控制器（例如電子壓力控制器 EPC 或電子流量控制器 EFC）可維持穿過熱脫附器維持限定流量，在昇溫條件操作時可控制分離管柱固定流量；此外，系
統必需包括有內置或外接之濃縮裝置及所有其它必需之補助設備，例如：分離管柱及氫體或低溫控制閥件。

7、質譜儀：為四極式、離子阱或其他相同功能之質譜儀，具每秒至少可掃描 29 至 300 amu 一次，使用對氟溴化苯（4-Bromofluorobenzene，BFB）分析時，可以產生符合操作標準之質譜者。

8、VOCs 物種：98 種(如表一之物種所示)。

三、結果與討論

1. 採樣位置圖
(1)A 幼稚園

(2)B 幼稚園
2. VOCs 檢測結果

本研究進行期間，係兩間幼兒園正常作息的條件下進行採樣，如表一,表二所示總計以 Canister 採樣器室內及室外僅 Acetone 之濃度有明顯測定出濃度數值，採樣分析之數據顯示其 Acetone 之濃度介於 3.20~5.40 ppb，平均值為 4.08 ppb。
表一 A 幼稚園室內外 VOCs 檢測結果

<table>
<thead>
<tr>
<th>VOCs COMPOUNDS</th>
<th>分析結果</th>
<th>報告結果(偵測極限)</th>
<th>分析結果</th>
<th>報告結果(偵測極限)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorodifluoromethane</td>
<td>-</td>
<td>ND<0.65</td>
<td>-</td>
<td>ND<0.65</td>
</tr>
<tr>
<td>Propane</td>
<td>-</td>
<td>ND<1.98</td>
<td>-</td>
<td>ND<0.39</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>-</td>
<td>ND<0.73</td>
<td>-</td>
<td>ND<0.73</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>-</td>
<td>ND<0.59</td>
<td>-</td>
<td>ND<0.59</td>
</tr>
<tr>
<td>1,2-Dichloro-1,1,2,2-tetrafluoroethane</td>
<td>-</td>
<td>ND<0.92</td>
<td>-</td>
<td>ND<0.92</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>-</td>
<td>ND<0.69</td>
<td>-</td>
<td>ND<0.69</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>-</td>
<td>ND<0.46</td>
<td>-</td>
<td>ND<0.46</td>
</tr>
<tr>
<td>trans-2-Butene</td>
<td>-</td>
<td>ND<0.75</td>
<td>-</td>
<td>ND<0.75</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>-</td>
<td>ND<0.73</td>
<td>-</td>
<td>ND<0.73</td>
</tr>
<tr>
<td>cis-2-Butene</td>
<td>-</td>
<td>ND<0.67</td>
<td>-</td>
<td>ND<0.67</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>-</td>
<td>ND<0.97</td>
<td>-</td>
<td>ND<0.97</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>-</td>
<td>ND<0.62</td>
<td>-</td>
<td>ND<0.62</td>
</tr>
<tr>
<td>Acrolein</td>
<td>-</td>
<td>ND<0.40</td>
<td>-</td>
<td>ND<0.40</td>
</tr>
<tr>
<td>Acetone</td>
<td>3.26</td>
<td>3.3</td>
<td>5.42</td>
<td>5.4</td>
</tr>
<tr>
<td>Isopentane</td>
<td>-</td>
<td>ND<0.63</td>
<td>-</td>
<td>ND<0.63</td>
</tr>
<tr>
<td>Trichloroofluoromethane</td>
<td>-</td>
<td>ND<0.66</td>
<td>-</td>
<td>ND<0.66</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>-</td>
<td>ND<0.49</td>
<td>-</td>
<td>ND<0.49</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>-</td>
<td>ND<0.60</td>
<td>-</td>
<td>ND<0.60</td>
</tr>
<tr>
<td>trans-2-Pentene</td>
<td>-</td>
<td>ND<0.58</td>
<td>-</td>
<td>ND<0.58</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>-</td>
<td>ND<0.53</td>
<td>-</td>
<td>ND<0.53</td>
</tr>
<tr>
<td>cis-2-Pentene</td>
<td>-</td>
<td>ND<0.50</td>
<td>-</td>
<td>ND<0.50</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>-</td>
<td>ND<0.52</td>
<td>-</td>
<td>ND<2.14</td>
</tr>
<tr>
<td>3-Chloro-1-Propene</td>
<td>-</td>
<td>ND<0.66</td>
<td>-</td>
<td>ND<0.66</td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-trifluoroethane</td>
<td>-</td>
<td>ND<0.51</td>
<td>-</td>
<td>ND<0.51</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>-</td>
<td>ND<0.61</td>
<td>-</td>
<td>ND<0.61</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>-</td>
<td>ND<0.50</td>
<td>-</td>
<td>ND<0.50</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>-</td>
<td>ND<0.43</td>
<td>-</td>
<td>ND<0.43</td>
</tr>
<tr>
<td>2-Methylpentane</td>
<td>-</td>
<td>ND<0.56</td>
<td>-</td>
<td>ND<0.56</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>-</td>
<td>ND<0.65</td>
<td>-</td>
<td>ND<0.65</td>
</tr>
<tr>
<td>3-methylPentane</td>
<td>-</td>
<td>ND<0.53</td>
<td>-</td>
<td>ND<0.53</td>
</tr>
<tr>
<td>Compounds</td>
<td>Result</td>
<td>Reporting Result</td>
<td>Result</td>
<td>Reporting Result</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>------------------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>1-Hexene</td>
<td>ND<0.54</td>
<td></td>
<td>ND<0.54</td>
<td></td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND<0.43</td>
<td></td>
<td>ND<0.43</td>
<td></td>
</tr>
<tr>
<td>BCM</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Hexane</td>
<td>ND<0.56</td>
<td></td>
<td>ND<0.56</td>
<td></td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND<0.53</td>
<td></td>
<td>ND<0.53</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND<0.55</td>
<td></td>
<td>ND<0.55</td>
<td></td>
</tr>
<tr>
<td>Methylcyclopentane</td>
<td>ND<0.50</td>
<td></td>
<td>ND<0.50</td>
<td></td>
</tr>
<tr>
<td>2,4-Dimethylpentane</td>
<td>ND<0.52</td>
<td></td>
<td>ND<0.52</td>
<td></td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND<0.54</td>
<td></td>
<td>ND<0.54</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>ND<0.52</td>
<td></td>
<td>ND<0.52</td>
<td></td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>ND<0.58</td>
<td></td>
<td>ND<0.58</td>
<td></td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>ND<0.67</td>
<td></td>
<td>ND<0.67</td>
<td></td>
</tr>
<tr>
<td>2-methylHexane</td>
<td>ND<0.59</td>
<td></td>
<td>ND<0.59</td>
<td></td>
</tr>
<tr>
<td>2,3-dimethylPentane</td>
<td>ND<0.35</td>
<td></td>
<td>ND<0.35</td>
<td></td>
</tr>
<tr>
<td>1,4-DFB</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>ND<0.55</td>
<td></td>
<td>ND<0.55</td>
<td></td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>ND<0.56</td>
<td></td>
<td>ND<0.56</td>
<td></td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>ND<0.54</td>
<td></td>
<td>ND<0.54</td>
<td></td>
</tr>
<tr>
<td>2,2,4-trimethylpentane</td>
<td>ND<0.47</td>
<td></td>
<td>ND<0.47</td>
<td></td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td>ND<0.49</td>
<td></td>
<td>ND<0.49</td>
<td></td>
</tr>
<tr>
<td>Heptane</td>
<td>ND<0.48</td>
<td></td>
<td>ND<0.48</td>
<td></td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>ND<0.48</td>
<td></td>
<td>ND<0.48</td>
<td></td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>ND<0.93</td>
<td></td>
<td>ND<0.93</td>
<td></td>
</tr>
<tr>
<td>MethylCyclohexane</td>
<td>ND<0.45</td>
<td></td>
<td>ND<0.45</td>
<td></td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>ND<0.51</td>
<td></td>
<td>ND<0.51</td>
<td></td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>ND<0.57</td>
<td></td>
<td>ND<0.57</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>ND<0.50</td>
<td></td>
<td>ND<2.04</td>
<td></td>
</tr>
<tr>
<td>2-methylheptane</td>
<td>ND<0.44</td>
<td></td>
<td>ND<0.44</td>
<td></td>
</tr>
<tr>
<td>3-methylheptane</td>
<td>ND<0.48</td>
<td></td>
<td>ND<0.48</td>
<td></td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>ND<0.46</td>
<td></td>
<td>ND<0.46</td>
<td></td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>ND<0.57</td>
<td></td>
<td>ND<0.57</td>
<td></td>
</tr>
<tr>
<td>Octane</td>
<td>ND<0.51</td>
<td></td>
<td>ND<0.51</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>ND<0.49</td>
<td></td>
<td>ND<0.49</td>
<td></td>
</tr>
<tr>
<td>CB-d5</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Chloro benzene</td>
<td>ND<0.53</td>
<td></td>
<td>ND<0.53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>分析結果</td>
<td>報告結果(偵測極限)</td>
<td>分析結果</td>
<td>報告結果(偵測極限)</td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------------------</td>
<td>----------</td>
<td>------------------</td>
</tr>
<tr>
<td>Ethyl benzene</td>
<td>-</td>
<td>ND<0.49</td>
<td>-</td>
<td>ND<0.49</td>
</tr>
<tr>
<td>m,p-xylene</td>
<td>-</td>
<td>ND<0.87</td>
<td>-</td>
<td>ND<0.87</td>
</tr>
<tr>
<td>Styrene</td>
<td>-</td>
<td>ND<0.51</td>
<td>-</td>
<td>ND<0.51</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>-</td>
<td>ND<0.41</td>
<td>-</td>
<td>ND<0.41</td>
</tr>
<tr>
<td>o-xylene</td>
<td>-</td>
<td>ND<0.41</td>
<td>-</td>
<td>ND<0.41</td>
</tr>
<tr>
<td>BFB</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>-</td>
<td>ND<0.51</td>
<td>-</td>
<td>ND<0.51</td>
</tr>
<tr>
<td>n-propybenzenel</td>
<td>-</td>
<td>ND<0.54</td>
<td>-</td>
<td>ND<0.54</td>
</tr>
<tr>
<td>m-Ethyltoluene</td>
<td>-</td>
<td>ND<0.51</td>
<td>-</td>
<td>ND<0.51</td>
</tr>
<tr>
<td>p-Ethyltoluene</td>
<td>-</td>
<td>ND<0.47</td>
<td>-</td>
<td>ND<0.47</td>
</tr>
<tr>
<td>1,3,5-Trimethyl benzene</td>
<td>-</td>
<td>ND<0.51</td>
<td>-</td>
<td>ND<0.51</td>
</tr>
<tr>
<td>Alpha-Methyl styrene</td>
<td>-</td>
<td>ND<0.38</td>
<td>-</td>
<td>ND<0.38</td>
</tr>
<tr>
<td>o-Ethyltoluene</td>
<td>-</td>
<td>ND<0.41</td>
<td>-</td>
<td>ND<0.41</td>
</tr>
<tr>
<td>1,2,4-Trimethyl benzene</td>
<td>-</td>
<td>ND<0.44</td>
<td>-</td>
<td>ND<0.44</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>-</td>
<td>ND<0.43</td>
<td>-</td>
<td>ND<0.43</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>-</td>
<td>ND<0.46</td>
<td>-</td>
<td>ND<0.46</td>
</tr>
<tr>
<td>1,2,3-trimethyl benzene</td>
<td>-</td>
<td>ND<0.44</td>
<td>-</td>
<td>ND<0.44</td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>-</td>
<td>ND<0.32</td>
<td>-</td>
<td>ND<0.32</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>-</td>
<td>ND<0.48</td>
<td>-</td>
<td>ND<0.48</td>
</tr>
<tr>
<td>1,3-diethylbenzene(m-d...)</td>
<td>-</td>
<td>ND<0.58</td>
<td>-</td>
<td>ND<0.58</td>
</tr>
<tr>
<td>1,2-diethylbenzene(p-d...)</td>
<td>-</td>
<td>ND<0.65</td>
<td>-</td>
<td>ND<0.65</td>
</tr>
<tr>
<td>n-Undecane</td>
<td>-</td>
<td>ND<0.37</td>
<td>-</td>
<td>ND<0.37</td>
</tr>
<tr>
<td>n-Dodecane</td>
<td>-</td>
<td>ND<0.35</td>
<td>-</td>
<td>ND<0.35</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>-</td>
<td>ND<0.47</td>
<td>-</td>
<td>ND<0.47</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>-</td>
<td>ND<0.77</td>
<td>-</td>
<td>ND<0.77</td>
</tr>
</tbody>
</table>

表二 B 幼稚園室内外 VOCs 檢測結果

<table>
<thead>
<tr>
<th>VOCs COMPOUNDS</th>
<th>室內 VOCs 濃度(ppb)</th>
<th>室外 VOCs 濃度(ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorodifluoromethane</td>
<td>-</td>
<td>ND<0.65</td>
</tr>
<tr>
<td>Propane</td>
<td>-</td>
<td>ND<1.98</td>
</tr>
<tr>
<td>Dichlorodifluoromethane</td>
<td>-</td>
<td>ND<0.73</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>-</td>
<td>ND<0.59</td>
</tr>
<tr>
<td>1,2-Dichloro-1,1,2,2-tetrafluoroethane</td>
<td>-</td>
<td>ND<0.92</td>
</tr>
<tr>
<td>Compound</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>ND<0.69</td>
<td>ND<0.69</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>ND<0.46</td>
<td>ND<0.46</td>
</tr>
<tr>
<td>trans-2-Butene</td>
<td>ND<0.75</td>
<td>ND<0.75</td>
</tr>
<tr>
<td>Bromomethane</td>
<td>ND<0.73</td>
<td>ND<0.73</td>
</tr>
<tr>
<td>cis-2-Butene</td>
<td>ND<0.67</td>
<td>ND<0.67</td>
</tr>
<tr>
<td>Chloroethane</td>
<td>ND<0.97</td>
<td>ND<0.97</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>ND<0.62</td>
<td>ND<0.62</td>
</tr>
<tr>
<td>Acrolein</td>
<td>ND<0.40</td>
<td>ND<0.40</td>
</tr>
<tr>
<td>Acetone</td>
<td>4.38</td>
<td>4.4</td>
</tr>
<tr>
<td>Isopentane</td>
<td>ND<0.63</td>
<td>ND<0.63</td>
</tr>
<tr>
<td>Trichlorofluoromethane</td>
<td>ND<0.66</td>
<td>ND<0.66</td>
</tr>
<tr>
<td>Acrylonitrile</td>
<td>ND<0.49</td>
<td>ND<0.49</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>ND<0.60</td>
<td>ND<0.60</td>
</tr>
<tr>
<td>trans-2-Pentene</td>
<td>ND<0.58</td>
<td>ND<0.58</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td>ND<0.53</td>
<td>ND<0.53</td>
</tr>
<tr>
<td>cis-2-Pentene</td>
<td>ND<0.50</td>
<td>ND<0.50</td>
</tr>
<tr>
<td>Methylene chloride</td>
<td>ND<0.52</td>
<td>ND<0.52</td>
</tr>
<tr>
<td>3-Chloro-1-Propene</td>
<td>ND<0.66</td>
<td>ND<0.66</td>
</tr>
<tr>
<td>1,1,2-Trichloro-1,2,2-trifluoroethane</td>
<td>ND<0.51</td>
<td>ND<0.51</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethene</td>
<td>ND<0.61</td>
<td>ND<0.61</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td>ND<0.50</td>
<td>ND<0.50</td>
</tr>
<tr>
<td>Vinyl acetate</td>
<td>ND<0.43</td>
<td>ND<0.43</td>
</tr>
<tr>
<td>2-Methylpentane</td>
<td>ND<0.56</td>
<td>ND<0.56</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>ND<2.18</td>
<td>ND<2.18</td>
</tr>
<tr>
<td>3-methylpentane</td>
<td>ND<0.53</td>
<td>ND<0.53</td>
</tr>
<tr>
<td>1-Hexene</td>
<td>ND<0.54</td>
<td>ND<0.54</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethene</td>
<td>ND<0.43</td>
<td>ND<0.43</td>
</tr>
<tr>
<td>BCM</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Hexane</td>
<td>ND<0.56</td>
<td>ND<0.56</td>
</tr>
<tr>
<td>Chloroform</td>
<td>ND<0.53</td>
<td>ND<0.53</td>
</tr>
<tr>
<td>1,2-Dichloroethane</td>
<td>ND<0.55</td>
<td>ND<0.55</td>
</tr>
<tr>
<td>Methylcyclopentane</td>
<td>ND<0.50</td>
<td>ND<0.50</td>
</tr>
<tr>
<td>2,4-Dimethylpentane</td>
<td>ND<0.52</td>
<td>ND<0.52</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td>ND<0.54</td>
<td>ND<0.54</td>
</tr>
<tr>
<td>Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Benzene</td>
<td>-</td>
<td>ND<0.52</td>
</tr>
<tr>
<td>Carbon tetrachloride</td>
<td>-</td>
<td>ND<0.58</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>-</td>
<td>ND<0.67</td>
</tr>
<tr>
<td>2-methylHexane</td>
<td>-</td>
<td>ND<0.59</td>
</tr>
<tr>
<td>2,3-dimethylPentane</td>
<td>-</td>
<td>ND<0.35</td>
</tr>
<tr>
<td>1,4-DFB</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td>-</td>
<td>ND<0.55</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td>-</td>
<td>ND<0.56</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>-</td>
<td>ND<0.54</td>
</tr>
<tr>
<td>2,2,4-trimethylpentane</td>
<td>-</td>
<td>ND<0.47</td>
</tr>
<tr>
<td>Methyl methacrylate</td>
<td>-</td>
<td>ND<0.49</td>
</tr>
<tr>
<td>Heptane</td>
<td>-</td>
<td>ND<0.48</td>
</tr>
<tr>
<td>cis-1,3-Dichloropropene</td>
<td>-</td>
<td>ND<0.48</td>
</tr>
<tr>
<td>4-Methyl-2-pentanone</td>
<td>-</td>
<td>ND<0.93</td>
</tr>
<tr>
<td>Methylcyclohexane</td>
<td>-</td>
<td>ND<0.45</td>
</tr>
<tr>
<td>trans-1,3-Dichloropropene</td>
<td>-</td>
<td>ND<0.51</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td>-</td>
<td>ND<0.57</td>
</tr>
<tr>
<td>Toluene</td>
<td>-</td>
<td>ND<2.04</td>
</tr>
<tr>
<td>2-methylheptane</td>
<td>-</td>
<td>ND<0.44</td>
</tr>
<tr>
<td>3-methylheptane</td>
<td>-</td>
<td>ND<0.48</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td>-</td>
<td>ND<0.46</td>
</tr>
<tr>
<td>1,2-Dibromoethane</td>
<td>-</td>
<td>ND<0.57</td>
</tr>
<tr>
<td>Octane</td>
<td>-</td>
<td>ND<0.51</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>-</td>
<td>ND<0.49</td>
</tr>
<tr>
<td>CB-d5</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Chloro benzene</td>
<td>-</td>
<td>ND<0.53</td>
</tr>
<tr>
<td>Ethyl benzene</td>
<td>-</td>
<td>ND<0.49</td>
</tr>
<tr>
<td>m,p-Xylene</td>
<td>-</td>
<td>ND<0.87</td>
</tr>
<tr>
<td>VOCs COMPOUNDS</td>
<td>分析結果</td>
<td>報告結果(偵測極限)</td>
</tr>
<tr>
<td>Styrene</td>
<td>-</td>
<td>ND<0.51</td>
</tr>
<tr>
<td>1,1,2,2-Tetrachloroethane</td>
<td>-</td>
<td>ND<0.41</td>
</tr>
<tr>
<td>o-xylene</td>
<td>-</td>
<td>ND<0.41</td>
</tr>
<tr>
<td>BFB</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Isopropylbenzene</td>
<td>-</td>
<td>ND<0.51</td>
</tr>
<tr>
<td>n-propylbenzenel</td>
<td>-</td>
<td>ND<0.54</td>
</tr>
<tr>
<td>m-Ethyltoluene</td>
<td>-</td>
<td>ND<0.51</td>
</tr>
<tr>
<td>Substance</td>
<td>Value1</td>
<td>Value2</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>p-Ethyltoluene</td>
<td>-</td>
<td>ND<0.47</td>
</tr>
<tr>
<td>1,3,5-Trimethyl benzene</td>
<td>-</td>
<td>ND<0.51</td>
</tr>
<tr>
<td>Alpha-Methyl styrene</td>
<td>-</td>
<td>ND<0.38</td>
</tr>
<tr>
<td>o-Ethyltoluene</td>
<td>-</td>
<td>ND<0.41</td>
</tr>
<tr>
<td>1,2,4-Trimethyl benzene</td>
<td>-</td>
<td>ND<0.44</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>-</td>
<td>ND<0.43</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>-</td>
<td>ND<0.46</td>
</tr>
<tr>
<td>1,2,3-trimethylbenzene</td>
<td>-</td>
<td>ND<0.44</td>
</tr>
<tr>
<td>Benzyl Chloride</td>
<td>-</td>
<td>ND<0.32</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>-</td>
<td>ND<0.48</td>
</tr>
<tr>
<td>1,3-diethylbenzene(m-d...)</td>
<td>-</td>
<td>ND<0.58</td>
</tr>
<tr>
<td>1,2-diethylbenzene(p-d...)</td>
<td>-</td>
<td>ND<0.65</td>
</tr>
<tr>
<td>n-Undecane</td>
<td>-</td>
<td>ND<0.37</td>
</tr>
<tr>
<td>n-Dodecane</td>
<td>-</td>
<td>ND<0.35</td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>-</td>
<td>ND<0.47</td>
</tr>
<tr>
<td>Hexachlorobutadiene</td>
<td>-</td>
<td>ND<0.77</td>
</tr>
</tbody>
</table>

A 幼稚園室内外 Acetone 濃度(ppb)

![Acetone Graph A](image)

B 幼稚園室内外 Acetone 濃度(ppb)

![Acetone Graph B](image)
A, B 幼稚園室外 Acetone 濃度(ppb)

A, B 幼稚園室外 Acetone 濃度(ppb)

A 幼稚園 VOCs 濃度比例

A 幼稚園室外 Acetone 濃度比例
A 幼稚園室內 Acetone 濃度比例

B 幼稚園 VOCs 濃度比例

B 幼稚園室外 Acetone 濃度比例

B 幼稚園室內 Acetone 濃度比例
3. 暴露風險
風險評估之作業流程主要包括四個步驟：
(1) 危害鑑定
(2) 剷量－效應評估
(3) 暴露評估
(4) 風險推估
致癌風險度之計算方法：

\[Risk = \frac{C \times IR \times AT \times AF}{BW} \times slope factor \ (mg \ kg^{-1} \ day^{-1}) \times slope factor (mg/kg \ day)^{-1} \]

其中:
C：污染物濃度 Contaminant Concentration (mg/m³)
IR：攝入率 Intake rate (m³/hour)
AT：平均時間 Average Time (hour/day)
AF：吸收率 Absorption Fraction (%)
BW：體重 Body Weight (kg)
Slope factor：潛勢斜率，暴露每單位劑量所增加的危險度

假設：幼童體重 20(kg)，攝入率 0.5，平均時間 0.3(hour/day)，吸收率 0.2
A 幼稚園室內 Acetone 濃度 3.26(ppb)
致癌風險 = 4.89 x 10⁵
B 幼稚園室內 Acetone 濃度 4.38(ppb)
致癌風險 = 6.57 x 10⁵

研究結論
1. 兩間幼稚園室內之 VOCs 均遠低於室內空氣品質標準
2. 兩間幼稚園的致癌風險低於一般可接受罹患癌症的風險度 1 x 10⁻⁶，兩處之污染暴露風險相當的低。
結果顯示兩間幼兒園的室內空氣品質差異在於，嘉南附設幼稚園全面使用空調系統，且未鄰近台南市交通繁忙之道路。聖兒幼兒園則是開放式的教學空間，會受到周界空氣污染的影響。

室內外環境關鍵影響因子包括 CO₂、TVOC，主要污染源來自室內污染，CO₂為人體代謝產生同時受到都市類型污染區域的污染。TVOC 為人員使用之物品有關，多來自於校園內所需之文具、環境清潔用品及室內建材的油漆粉刷，雖然檢測數值極低，但仍需注意室內通風，若通風不佳而累積其濃度將可能對人體造成傷害。

四、參考文獻
1. 行政院環境保護署，2005，中華民国94 年12 月30 日行政院環境保護署環署空字第0940106804 號室內空氣品質建議值。
2. 江哲銘等，2000，「室內建材揮發性有機物質檢測標準試驗法及程序之研究」，內政部建築研究所。
3. 王揚順，2010，國民小學室內空氣品質影響因子。
4. 肖文政，室內建材揮發性有機化合物之逸散種類與特性。
5. 陳丁于，2002，台灣地區室內環因子對建材揮發性有機物質逸散行為影響。
6. 周政荔，2008，學校各類教學空間室內空氣品質之研究。
7. 涂玉峰，室內空氣環境綜合評估指標之探討