行政院國家科學委員會專題研究計畫 成果報告

環境質爾蒙對國內水域之初步生態風險評估 研究成果報告(精簡版)

計畫類別:個別型

計畫編號: NSC 95-2313-B-041-006-

執 行 期 間 : 95 年 08 月 01 日至 96 年 07 月 31 日 執 行 單 位 : 嘉南藥理科技大學環境資源管理系

計畫主持人: 陳健民

共同主持人:丁望賢、黃大駿

計畫參與人員:碩士班研究生-兼任助理:廖瑞君、林佶慶

報告附件:出席國際會議研究心得報告及發表論文

處 理 方 式 : 本計畫可公開查詢

中華民國96年10月30日

行政院國家科學委員會補助專題研究計畫 □期中進度報告

環境賀爾蒙對國內水域之初步生態風險評估

. –			周別型計 95-2			冬合型計	畫		
主持 <i>丿</i> 共同主 共同主	·:陳俊 持人: 持人:	民 黄大駿 丁望賢 瑞	嘉南藥 嘉南藥 中央大 君 嘉南	里科技; 理科技; 學化學; 藥理科;	大學環境 大學環境 終 技大學環	6年7月 竟資源管理 境工學環 境大學環場	理系系 科學所	理系	
成果幸	報告類	頁型(依	マ 経費核	6定清.	單規定	繳交):	■精餡	育報告 []完整報告
	國外出 大陸地 帝國際	1差或 2區出 2學術	以研差會計下習或議畫	得報告 習心得 得報告	一份 早報告一 十二份	一份			
處理》		列管	計畫及	下列情	形者夕	卜,得立	即公開	月查詢	研究計畫、
執行	單位:	嘉南	藥理科技	支大學3	環境資源	原管理系			
中	華	民	國	96	年	10	月	25	日

一.摘要

本研究選用青魚將魚(Oryzias latipes, Japanese medaka) 為指標生 物,将 SPMD 萃取液注射於魚腹內, 經暴露一星期後再使用斷尾法取其血 清,並使用自動電泳系統 Experion Pro260分析其被誘導之魚體卵黃蛋白 前質 (vitellogenin, VTG) 的含量及誘 導率。本研究結果顯示:(1)高屏溪流 域之壬基苯酚經化學分析後其時量平 均濃度均超過 NP 誘導 VTG 閾值10 μg/L。(2)本實驗 SPMD 所吸附 NP 濃縮倍數高達 2500-3000 倍,証明其 的確可模擬魚體於水環境中吸附污染 物質之作用。(3) 由本研究監測數據得 知,SPMD應用於台灣河川的暴露時間 不宜太長。(4)5月份高屏溪下游為實驗 組中 VTG 誘導率最高者,其佔總蛋 白質之 0.212%,相當於對照組雄青鱂 魚體內背景VTG含量的 35.33 倍。(5) 活體實驗發現VTG誘導率與本實驗注 射SPMD萃取液中的 NP 濃度顯示無 明顯正相關性,必須綜合所有可能導 致 VTG 誘導或抑制的因素之後才能 做判斷。

本研究結果顯示 SPMD 技術之適用性。台灣河川污染嚴重,應針對可被SPMD 吸附或是對生物產生雌激素誘導的汙染物進行檢測,並進一步進行生物評估及生物指標與化學檢測結果之相關性分析。

關鍵字:卵黃蛋白前質、青魚將魚、壬基酚、半渗透膜採樣裝置

Abstract

In this study, the passive sampling technology, semi-permeable membrane devices (SPMD) was applied to collect water samples from Kao-Ping River Basin for chemical analysis and bioassays to investigate the relationship between of nonyphenol pollutant and biological effects. Moreover, vitellogenin (biochemical endpoint) was used as the biomarker for observation of entocrine disruptor endpoints.

Japanese medaka was selected as the indicative specie in this study. Fish were injected intraperitoneally with SPMD extracts, and were sacrificed after a total of 7-day exposure to the extracts. Plasma were immediately removed from each fish and maintained frozen at 80°C until biochemistry analysis. Estrogenic responses and inductivity were evaluated based on the expression of serum vitellogenin (VTG) using Experion Pro260 electrophoresis system.

The results indicated that (1) the time-weighted average conentrations of NP in Kao-Ping River Basin were over 10 µg/L NP inductivity VTG threshold limited value,(2) The NP accumulation times higher than NP in water sample by SPMD was up to 2500-3000. These results reveal that SPMD could serve as a good surrogate for fish to simulate accumulations of NP, and may be used as a universal surrogate for fish in natural waters. (3) According to the monitoring data, the expeosurs period of SPMD should not be too long when it was applied in aguatic environment in Taiwan. (4) The highest VTG induction rate was 0.212% for the extracts of river samples collected from the upper stream of Kao-Ping River in May, and this VTG induction rate was equal to 35.33-fold compared with SPMD blank.

(5) There was no significantly positive relationship between VTG induction rates detected in vivo for this experiment and the concentrations of NP in SPMD extracts. The relationship between VTG induction rate and concentration of NP should be discussed and concluded with overall considering the possibilities of the factor to enhance or suppress the VTG induction rate.

The preliminary results demonstrated that SPMD approach is appropriate to the environmental water samples. Moreover, contaminants that could be adsorbed by the SPMD membranes or could induce estrogenic effect to organisms in the environment should be determined with SPMD method widely in the future. The biological evaluation, biotic index and chemical analysis of environmental samples will performed advancedly to estimate the applicability and feasibility of this system.

Keywords: vitellogenin ; Japanese medaka ; Nonylphenol; SPMD

二.緣由與目的

水體污染一直是社會進步的副產 物,且其污染特性會隨時代的改變而 有差異。早期的水污染問題是來自於 家庭污水的有機負荷或傳統工業廢水 的大量污染物以及這些污染所衍生的 環境衛生問題,現今則轉為專注於新 的水污染議題,例如一些特殊之化學 物質,其雖微量但其危害卻遠較傳統 性的污染物深遠。因此本研究是以本 研究室所養殖之青鱂魚為研究對象, 以高屏溪為研究地點,採用被動式採 樣器 (passive sampling) 裝置將環境 中的污染物收集於採樣介質上,探討 壬基苯酚之污染程度與其可能產生之 長期性生物危害,藉由化學分析與生 物指標驗證仿雌激素物質在一般環境 中的普遍性,更進一步建立國內生態 風險評估及未來更適當之水體標準的

依據。

本研究旨在探討台灣地區特定水域中環境荷爾蒙污染狀況與生物效應之關連性。此研究主題的構思緣由為:(1)國內目前針對環境荷爾蒙物質在水中環境的調查僅限於特定物質的化學定性或定量分析,但卻欠缺對水中生物的潛在影響評估。

- (2) 被動式採樣法 (Semi-permeable Membrane Devices, SPMDs) 於國內 尚未被採用,若考量其優點以及未來 國內相關檢測工作之發展趨勢,有必 要引入國內。目前環境監測工作仍採 或短時間、或混合水樣 (composite sample)、或單一採樣 (grab sample) 等 方式,無法實際模擬污染物之傳輸與 分佈或生物在自然狀態下暴露情形。 若運用此被動式採樣法,不僅能評估 水中污染物的長期與累積效應,亦且 更接近於環境之實際狀況。且採用被 動式採樣器探討水體特殊物質 (環境 荷爾蒙) 之污染程度與其可能產生之 長期性生物危害,並調查兩者之間的 相關性。本實驗為國內初次引進與試 用被動式採樣器 SPMD,且驗證其在 國內環境監測之可行性,可做為未來 相關技術推展之參考。
- (3) 運用生化及生理的生物指標可瞭解環境污染物對魚體內不同生物結構層面的影響,以及其之間的關連性,並彌補傳統水中毒性試驗多採單一且以短期影響為觀察終點之不足。並使用 Bio-Rad 最新發展的 Experion Pro260 系統來建立新的生物檢測方法。
- (4) 國內目前的一般水體污染調查仍 以化學分析之數據為主,若輔以生質 指標之資訊,能更加掌握污染相當 特性。國內目前相關的研究相當 缺。若此模式經驗證可行,則則調查 國內未來針對相關議題之研究調查 作之模式。藉由化學分析與生物的 體證 份雌激素物質在一般環境中的 過性,可依此作為初步生態風險評估

以及未來訂定更適當之水體標準的依據。

本研究旨在探討一般水體所檢測出之環境荷爾蒙物質對實驗室的動物產生效應之關連性,並建立 SPMD 半自動採樣設備及 Experion Pro260 系統於國內檢測環境荷爾蒙物質之應用。相關工作方法及步驟已於原計畫書詳載,不再贅述。

三.結果與討論

本工作將SPMD萃取後所得之 1 mL 萃取液取 100 μL,依照衍生化步驟進 行衍生後,再進入 GC/MS 分析,即 可得知 SPMD 萃取液中所含 NP 之 濃度,如表1。此工作乃由中央大學丁 望賢老師之實驗室完成。

青鱂魚 VTG 蛋白質在血漿中的原始 形態其分子量為 420 kDa , 且主要的 蛋白質經由變性後其分子量位於 200 kDa 間[Li et al., 2004]。傳統方法通常 經由西方點墨法分析魚體內肝臟卵黃 蛋白前質誘導可利用蛋白質抗體去與 特定蛋白質 VTG 結合,判斷此蛋白 質樣本內是否有誘導VTG [Patyna ,1999 ; Hamazaki ,1987 ; Kashiwada 2002, ; Hamazaki, 1985; Nishi 2002],但本實驗使用 Experion Pro260 自動電泳分析系統並非如上述 西方轉漬法 (western blotting) 利用具 專一性的抗體來辨認。而是利用 Experion Pro260 分析系統直接定性定 量蛋白質,樣本中之所有蛋白質皆會 被檢析出,故本研究直接遵循文獻中 所發表的青鱂魚VTG 序列來判別本 實驗水樣是否具卵黃蛋白先質誘導 性。經 Experion pro260 自動電泳分析 系統分析後,蛋白質電泳呈現圖如圖 1,其中VTG序列為紅框處。其血液分 析樣本代號對照表如表2,而其結果數 據如表3。

經比對推算後,青鱂魚血清分析數據

整理如表3。其中對照組 VTG 標準品在分子量於 234.36 KDa 的位置有明顯的濃度顯現,約佔其總蛋白質濃度的 19.7%,其中分子量位於 187.58 KDa 、 202.96 KDa 的位置也有些微顯現。印證了文獻上所提及青鱂魚 VTG 分子量約位於 200 KDa [Hamazaki,1987;Li,2004]。

因此將其位於VTG序列分子量的 濃度加總,整理為表中顯示各組的 VTG 濃度 $(ng/\mu L)$ 與其總蛋白質濃度 $(ng/\mu L)$,並將 VTG 在總蛋白質中的比例換算成百分比(%),即為表3 中之(I)各樣本 VTG 佔總蛋白質比例 (%)。

本實驗青鱂魚注射後暴露一星 期,經 Experion Pro260 檢測其血清中 之蛋白質後結果顯示,由表3可看出 實驗組中 2006 年 12 月上游Ⅱ、 2007 年 1 月上游 I、2007 年 3 月 上游Ⅱ、2007 年 1 月中游、2007 年 3 月中游 I、2007 年 1 月下游 I、 2007 年 1 月下游Ⅱ等七組完全沒有 VTG 誘導反應之外,其他組別皆有 VTG 被誘導。由此結果得知,其可能 為魚體對污染物個別感受性差異性不 同所導致,因此為排除此隨機誤差, 故將各月份同地點之重複分析試驗結 果取其平均後再做其他比較分析。而 本實驗中各月份採樣點均有一重複試 驗,故,將各月份重複試驗的VTG佔 蛋白質比例作一平均計算,即得到(Ⅱ) 各月份VTG佔總蛋白質比例平均百分 比(%)。而若要得知各月份樣品 VTG 誘導率與對照組魚體VTG濃度背景值 差異,即要將實驗組中 VTG 佔總蛋 白質比例與對照組中的 SPMD Blank 和嘉藥人工浮島池的 VTG 所佔總蛋 白質比例作一比對,可得到實驗組相 對 SPMD Blank 對照組之VTG 誘導 倍數(Ⅲ),以及相對嘉藥人工浮島池對 照組之 VTG 誘導倍數(IV)。

首先,由表可看出對照組 SPMD Blank 的 VTG 誘導比率約佔總蛋白質的 0.006%,此值幾乎可忽略,其誘導 VTG 濃度為 1.4 ng/μL,可當做維青鱂魚體內 VTG 濃度之背景位值 [Harries,1997]。而本實驗中皆以此空各對照與各實驗組作比對,得到(Ⅲ)各月份實驗組相對 SPMD Blank 之 VTG 誘導倍數。由這些數據我們可以將分析結果作一標準化比對,即可知導致 VTG 誘導比例最高者為何樣本,並進一步分析其與 SPMD 萃取液中化合物之相關性。

由採樣點來探討。表3 中(Ⅱ)各月 份 VTG 佔總蛋白質比例平均百分比 (%)可看出,對照組嘉藥人工浮島池被 誘導 VTG 佔總蛋白質比率約為 0.007-0.1475%,最大誘導濃度為 5 月 份的 26.7 ng/μL, 其 VTG 佔總蛋白 質比例為相對 SPMD Blank 之 VTG 誘導倍數的 24.59 倍。高屏溪上游的 VTG 誘導比率約為 0.007-0.1941 %,最大誘導濃度為 5 月份的 43.4 ng/μL, 其 VTG 佔總蛋白質比例為相 對 SPMD Blank 之 VTG 誘導倍數的 32.35 倍,且其 VTG 佔總蛋白質比例 為相對於對照組嘉藥人工浮島池之 VTG 誘導倍數的 1.32 倍。中游的 VTG 誘導比率約為 0-0.084 %,最大 誘導濃度為 5 月份 13.8 ng/µL,其 VTG 佔總蛋白質比例為相對 SPMD Blank 之 VTG 誘導倍數的 14 倍, 並且其 VTG 佔總蛋白質比例為相對 於嘉藥人工浮島池 VTG 誘導倍數的 0.57 倍。下游 VTG 誘導比率約為 0.0795-0.212 %, 最大誘導濃度為 5 月 份的 48.2 ng/uL, 其 VTG 佔總蛋白 質比例為相對 SPMD Blank 之 VTG 誘導倍數的 35.33 倍,且其 VTG 佔 總蛋白質比例為相對於嘉藥人工浮島 VTG 誘導倍數的 1.44 倍。

由上述結果可得, SPMD 嘉藥對 照組及高屏溪各採樣點之生物暴露實 驗誘導 VTG 比率最高者皆為 2007 年 5 月份之樣本。其中本實驗 VTG 誘導比率最高的組別為 5 月份高屏 溪下游的 0.212 %。由此可知,2007 年 5月份 SPMD 萃取液中可能含最多雌 激素誘導物質。

本實驗中除了嘉藥人工浮島池 2006年12月及2007年3月為單 一暴露組別之外,其他實驗組別皆有 一重複試驗組,但重複試驗組誘導比 率有幾組差異頗大,如對照組嘉藥人 工浮島池2007年1月、高屏溪上游 2006年12月、2007年1月5月、 高屏溪中游2007年5月、高屏溪下 游2007年1月,此六個樣品的 VTG誘導比率都相差3倍以上。

四.計劃成果自評

以下幾點說明本計劃執行上與原計劃 出入或缺失之處以及原因的探討:

- 1.本實驗原預計監測 phenols、 akylphenolics、bisphenol-A 等雌激素 物質。但因 phenols 及 bisphenol-A 之採集回收率差,經模式推估後發現 其 log Kow<4,故較不易被膜內之三 酸甘油脂吸附,所以最後只針對壬基 苯酚做檢測,來探討其在高屏溪水域 之濃度及 SPMD 設備在台灣河川 之適用性。
- 以仿雌激素化學物質在不同時間的 濃度分佈來探討,本實驗四次採樣 經換算後濃度相差甚鉅,除了 12 月份和 1 月高屏溪上中下游採樣 點選擇不同之外,採樣暴露時間地 點及採樣時程中氣候對水質變化也 是一重大影響因子。
- 3. 排除採樣點之外在變因,仍要考慮 到季節因素影響,雖然 SPMD 不會 受外在溫度影響,但高屏溪水量水 質及 NP 分解速率卻會因季節不同 而受影響。
- 4. 採樣過程中, 5 月份採樣期剛好遇 到梅雨季節,水位暴漲,水流率改 變,河川中底泥 NP 可能因為水流 率改變而被揚起,因而被 SPMD 所

- 吸附,導致上游及中游河段 NP 時量平均濃度增高。
- 5. 本研究發現高屏溪上游之 NP 濃 度反而較中下游高,推估可能係因 中下游溪流湍急,水中溶氧提昇, 好氧微生物活躍,加速 NP 之代謝 分解所致。且上游河段在污廢水排 放點附近, NP 尚未完成分解前, 因此其濃度仍顯現局部偏高現象。 由以上這些監測數據得知, SPMD 採樣應用於國內暴露時間不宜太 久,因台灣水流湍急且水位因季節 變化不穩定、水質懸浮固體濃度 高,易阻塞 SPMD 膜表面,妨礙其 攝取污染物影響攝取率。因此進行 SPMD 採樣前,必須先了解採樣地 區的環境特性,包括地形、氣候、 水流速、基本水質資料、污染排放 源等等,才能達到準確監測環境之 目的。

五.参考文獻

Li Z, Wang S, Lee NA, Alan RD and Kennedy IR. "Development of a solid-phase extraction-enzyme-linked immunosorbent assay method for the determination of estrone in water."

Analytical Chimica Acta.503:171-177, 2004.

- Patyna P. J., R.A. Davi, T. F. Parkerton, R. P. Brown, and K. R. Cooper, "A Proposed Multigeneration Protocol for Japanese Medaka (Oryzias latipes) to Evaluate Effects of Endocrine Disruptors." *The Science of the Total Environment*, 233: 211-220,1999.
- Hamazaki, T., Iuchi, I., Yamagami, K.,. "A spawning female-specific substance reactive to anti-chorion (egg envelope)glycoprotein antibody in the teleost, *Oryzias latipes*." *J. Exp. Zool.* 235, 269–279. 1985.
- Nishi, K., Chikae, M., Hatano, Y., Mizukami, Н., Yamashita, M., Sakakibara, R., Tamiya, "Development and application of a monoclonal antibody-based sandwich ELISA for quantification of Japanese medaka (Oryzias latipes) Comp. vitellogenin." Biochem. Physiol. C 132, 161-169. 2002.
- Hamazaki, T.S., Iuchi, I., Yamagami, K.,. "Purification and identification of vitellogenin and its immunohistochemical detection in growing oocytes of the teleost, *Oryzias latipes.*" *J. Exp. Zool.* 242, 333–341. 1987.
- Kashiwada, S., Ishikawa, H., Miyamoto, N., Ohnishi, Y., Magara, Y., "Fish test for endocrine-disruption and estimation of water quality of Japanese rivers." *Water Res.* 36, 2161–2166, 2002.
- Harries J. E., Sheahan D. A., Jobling S., Matthiessen P., Paula N., Sumpter J. P., Tylor T., Zaman N. 1997 .Estrogenic Activity in Five United Kingdom Rrivers Detected by Measurement of Vitellogensis in Caged Male Trout. *Environmental Toxicology and Chemistry*, 16(3): 534-542

表 1、SPMD 脂中壬基苯酚物質的質量濃度(µg/mL)

地點	Blank	嘉水		上	游	中游		下游	
時間		I	II	I	П	I	П	I	П
12 月	0.1	0.2	28	357.5	343.6		-	29.5	26.7
1月		0.63	0.61	3.64	2.99	0.68	0.48	19.6	15.5
3月		0.	.1	2.43	2.07	0.59	0.59	8.99	11.3
5月		0.36	0.44	23.81	24.92	2.77	3.45	7.48	8.01

說明:表中---代表無此檢測數據

表 2 Experion Pro260 分析樣本代號對照表(圖 1 之代號)

編號		組	編號		組	別	
L V		Experion pro VTG核		С	7 8	高屏溪上游	5月 I 5月 Ⅱ
В		12月1	olank	<u>. </u>	1		1月ⅠⅡ
A	1 2 3 4 5 6	嘉藥人工浮島 池	12月 1月 I 1月 Ⅲ 3月 5月 I 5月 Ⅱ	D	2 3 4 5 1 2	高屏溪中游	3月 I 3月 II 5月 I 5月 II 12月 I 12月 II
С	1 2 3 4 5 6	高屏溪上游	12月 I 12月 I 12月 II 1月 II 1月 II 3月 II	Е	3 4 5 6 7 8	高屏溪下游	1月 I 1月 I 3月 I 3月 I 5月 I 5月 I

圖 1、Experion pro260 分析電泳圖

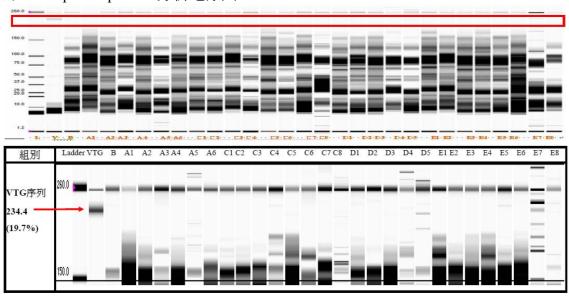


表 3、Experion Pro 260 分析結果

						*			
						(I)	(Π)	(Ⅲ)	(IV)
		7		總蛋白質濃	VTG序列濃	IG佔	各月份VIG佔總蛋白	各月份樣本相對	各月份樣本相對嘉
		額列		度(ng/µl)	媄(ng/μl)	總蛋白質比例	質比例平均百分比	SPMD Blank⊄	嫌人工浮島池之
						(%)	(%)	VTG誘導倍數	VTG誘導倍數
	Δ	VTG標準品		2101.9	420.3	19,996	19,996	3332.67	
	S	SPMD Blank		23840.9	1.4	90000	9000	<i> </i>	
华		2006年12月	Ι	81054.9	9.6	0.007	0.007	1.67	
路	7 楼 #	2007年1日	Ι	22633.5	5.5	0.024	0.0883	62.71	
₩ %B			Π	15742.9	24.03	0.1526	0.0003	7/.41	
4	14年	2007年3月	Ι	15975.2	6.9	0.043	0.043	7.17	
)	2007年5日	Ι	19830.5	22.8	0.115	0.1476	03.450	
		1007 TON	Π	14851.2	26.7	0.180	6/41.0	74.37	
衡		2006年12月	Ι	23505.3	32	0.136	890 0	11 33	9 71
盤		1,000=	П	21623.7	0	0	9900	2001	1117
貆		2007年1日	Ι	22112.4	0	0	0.1405	24.02	1 60
	高屏溪		Π	8401.7	33.5	0.299	0.272.0	76:17	70.1
	下游	2007年2日	Ι	31710.3	4.3	0.014	0 007	1167	0.163
		Kc+/007	П	24497.7	0	0	0.007	701.1	0.103
		2007年5日	Ι	13282.8	43.4	0.327	0.10/1	32 62	1 33
		2007 1 271	П	32538.9	19.9	0.612	0.1771	0.70	76.7
	高屏溪	高屏溪 2006年12月	Ι				採券器被稿		

出席國際學術會議心得報告

計畫編號	NSC 95-2313-B-041-006-
計畫名稱	環境賀爾蒙對國內水域之初步生態風險評估
出國人員姓名	陳健民
服務機關及職稱	嘉南藥理科技大學 環境資源管理系
△	95年9月17日至95年9月21日
會議時間地點	北京
會議名稱	環境毒理與化學學會亞洲/大洋洲分會 2006 年會 Society of Environmental Toxicology and Chemistry Asia/Pacific 2006
	Removal of Estrogenicity of wastewaters by Constructed Wetlands Determined by Vitellogenin Induction in Japanese Medaka (<i>Oryzias latipes</i>)

一、 參加會議經過

SETAC(Society of Environmental Toxicology and Chemistry)是聞名國際的學術團體,此次會議 是亞洲地區有關生態毒物、毒理、環境污染化學與風險評估相當重要之國際型會議,且吸引 各國相關領域的專家學者共聚探討亞洲地區有關人體健康與生態毒害風險的相關議題。本人 於 9 月 17 日抵達北京,當日晚間即參加 SETAC 之 Asia/Pacific 分會之接待晚宴,與其他來自 亞洲、澳洲與紐西蘭的會員會面。隔日(9月18日)準時到達會場(北大朝陽會館)報到參加由北 大環境學院院長陶樹博士開幕典禮。此次會議型式如同往常包括 ORAL 及 POSTER 兩大類 型。早場皆為專題演講下午則安排為論文發表。由於參加者眾多,大會安排報告密集,相同 時段之發表會(口頭式成果報告)約有五場次,參會人員則依大會所分發之程序冊及配合個人 之研究領域或興趣而做不同選擇參予。另外,成果發表壁報部分(Poster Session),則按大會指 定之展示日期,張貼於展示板上。大會並安排設備產品展示區與休息區相鄰,故與會人士可 於會議之休息時段,同時享用大會提供之精緻點心、飲料、咖啡或茶並瀏覽贊助產商之產品, 所營造之氣氛更加熱絡參與人士們之間的心得交換及討論交流。本人之論文簡報為19日之下 午,報告結束後,並與參會者熱烈討論。本人亦以海報發表另一篇論文,並於指定位置及時 間張貼。研討會議程如附件一。9月19日中午本人則與SETAC之 Asia/Pacific 分會會長與會 員共進午餐並討論有關 2008 年 SETAC World Congress 將於澳洲舉辦之事宜,大家亦興奮異 常,因此大會相當具代表性。

9月20日亦為全日之演講及論文發表,大會並於晚間由北大環境學院院長閉幕致詞後圓滿結束。本人則於21日返國。

二、 與會心得

承蒙國科會補助使個人得以成行,出席此學術盛會,藉此機會表達內心感謝之意。筆者在國

外亦曾參加大型之研討會,皆可感受出舉辦單位之努力以求大會之成功圓滿,此次亦無例外。從小處(如交通安排、餐飲)到大處(如會場佈置、效果)皆無可挑剔之處,而可見舉辦單位之用心。唯參會人數及發表論文眾多,各場次緊迫,造成相關或欲參加之題目因時間衝突而錯失,無法盡數吸收,且部份會議廳空間較有限,當真是人滿為患足以形容。儘管如此,筆者亦覺受益良多。另外,能藉此機會與國際間相同學術領域之專家學者交流、交換心得,亦屬難能可貴。總而言之,此次個人之參會可謂受益良多。尤其是獲知 2008 的 SETAC World Congress 將於澳洲由本分會舉辦,此也表示本分會表現獲得總會之肯定。

