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A Computer-Aided Diagnosis for Locating
Abnormalities in Bone Scintigraphy by

a Fuzzy System With a Three-Step
Minimization Approach
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Abstract—Bone scintigraphy is an effective method to diagnose
bone diseases such as bone tumors. In the scintigraphic images,
bone abnormalities are widely scattered on the whole body.
Conventionally, radiologists visually check the whole-body images
and find the distributed abnormalities based on their expertise.
This manual process is time-consuming and it is not unusual
to miss some abnormalities. In this paper, a computer-aided
diagnosis (CAD) system is proposed to assist radiologists in the
diagnosis of bone scintigraphy. The system will provide warning
marks and abnormal scores on some locations of the images
to direct radiologists’ attention toward these locations. A fuzzy
system called characteristic-point-based fuzzy inference system
(CPFIS) is employed to implement the diagnosis system and
three minimizations are used to systematically train the CPFIS.
Asymmetry and brightness are chosen as the two inputs to the
CPFIS according to radiologists’ knowledge. The resulting CAD
system is of a small-sized rule base such that the resulting fuzzy
rules can be not only easily understood by radiologists, but also
matched to and compared with their expert knowledge. The
prototype CAD system was tested on 82 abnormal images and 27
normal images. We employed free-response receiver operating
characteristics method with the mean number of false positives
(FPs) and the sensitivity as performance indexes to evaluate the
proposed system. The sensitivity is 91.5% (227 of 248) and the
mean number of FPs is 37.3 per image. The high sensitivity and
moderate numbers of FP marks per image shows that the pro-
posed method can provide an effective second-reader information
to radiologists in the diagnosis of bone scintigraphy.

Index Terms—Biomedical imaging, bones, fuzzy systems, med-
ical diagnosis, minimization methods.

I. INTRODUCTION

BONE scintigraphy is a useful tool in diagnosing bone dis-
eases such as bone tumors [1], metabolic bone disease

[2], Reiter’s syndrome [3], Paget’s disease [4], and Gardner’s
syndrome [5]. It is highly sensitive. By manually checking the
whole-body scans of patients, radiologists can find the abnormal
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Fig. 1. One sample image of bone scintigraphy. The left is the original image,
and the right is its CAD by adding possible abnormal marks to help radiologists.
Five of these marks at the arrow-pointed locations are true abnormalities. The
other 19 marks are FPs. There are no missing abnormalities for this sample
image.

locations and their distributions in bone. The diagnosis is based
on the expertise and also subjective assessment of radiologists
by visually inspecting the bone scintigraphic images. In this
paper, we propose a computer-aided diagnosis (CAD) system
to aid radiologists by providing an automatic classification and
objective scores of possible abnormalities on the whole-body
scans.

Fig. 1 is a sample image of bone scintigraphy. The left-hand
side of Fig. 1 is the original image, and the right-hand side is
the result after the diagnosis of the proposed system. When
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a new scintigraphic image is opened, the system provides ab-
normal marking as squares and scores of all these squares on
the status bar when the mouse is clicked on the squares. The
CAD system acts as a second reader to provide warning marks.
For example, 24 squares are labeled in the right-hand side of
Fig. 1 as warning marks. All of them deserve careful screening.
Five arrow-pointed squares are true abnormalities. Especially,
the arrow-pointed mark at the right thigh may be overlooked
since its pixel value is lower than many other pixels in the image.
The trained CAD system can mark such abnormalities timely
and effectively.

One major application of CAD on medical images is the di-
agnosis of mammograms. Nowadays, only two commercially
CAD systems for mammograms are available [6]. They are the
“ImageChecker” system (R2, Los Altos, CA.) [7]–[9], and the
“Second Look” CAD system (CADx Medical Systems, Quebec,
Canada) [6]. The sensitivities and false positive (FP) marks per
image of these two systems are suitable comparison baselines
for new CAD systems for mammograms or other images. In
[10], Verma and Zakos used fuzzy-neural and feature extraction
techniques to diagnose microcalcifications’ patterns. Cheng et
al. used a fuzzy logic technique to detect microcalcifications
even in very dense breast mammograms [11]. Yu and Guan em-
ployed neural networks and wavelet transforms to detect clus-
ters of microcalcifications [12]. Li et al. utilized morphological
enhancement, contextual segmentation and neural networks to
mammographic mass detection [13], [14]. Some other CAD ap-
plications are the detections for lung nodules by neural networks
[15], the frontal lobe atrophy by fuzzy -means [16], glioblas-
toma-multiforme tumors by a knowledge-based technique [17],
ocular fundus vessels by fuzzy -means [18], and malignant
melonoma by several segmentation algorithms and feature se-
lections [19]. In this paper, we tried to apply CAD to a new
area of bone scintigraphy as shown in Fig. 1. Bone scintig-
raphy has some similar properties as in the above researches.
Like mammograms, abnormalities are few locations widely dis-
tributed in the whole scan. They can be detected by brightness
and shape, but for bone scintigraphy, shape is not an effective
parameter. We will employ a new parameter, asymmetry, in our
CAD system. This is based on the symmetry structure of human
skeleton. Asymmetry is one of the major parameters employed
by radiologists in checking bone scintigraphic images.

In this paper, in order to take into account of experts’
knowledge, we use a fuzzy-logic technique in our CAD system.
In addition to some of the aforementioned papers, fuzzy logic
was also applied in medical images such as segmentation
of intrathoracic airway trees [20], model-free functional
MRI analysis [21], segmentation of dynamic neuroreceptor
single-photon emission tomography images [22], enhance-
ment of computerized tomography images [23], classification
analysis of exercise-induced lower leg pain [24], and feature
extraction for brain MRI segmentation [25]. Many of the
researches employed fuzzy -means clustering, but to have
linguistic interpretation of the CAD system, we will take the
original form of fuzzy inference rules as in Zadeh’s original in-
troduction of fuzzy logic [26]–[28]. We will follow our previous
research in [29], [30] in which a characteristic-point-based
fuzzy inference system (CPFIS) was proposed. A new training

method by a three-step minimization approach is employed in
this paper to train the CPFIS in a systematic way. The mini-
mization approach consists of a gradient-projection method,
a Gauss–Jordan-elimination-based column elimination, and
a back-propagation tuning. The number of fuzzy rules are
gradually decreased from the original number of training
samples to a small number in the process of minimization. The
resulting CPFIS has a small-sized rule base. The advantage is
that the linguistic interpretation and graphical presentation of
few fuzzy rules can enable the underlying CAD diagnosing
mechanism to be easily understood by radiologists [31], [32].
In our experiment, three or four rules were obtained at the
end of training. Interpreted by the input variables, asymmetry
and brightness, and the output variable, score, the proposed
CAD system can be matched to and compared with human
knowledge about the diagnosis of bone scintigraphy.

This paper is organized as follows. The image preprocessing
of bone scintigraphy is discussed in Section II. A local-max-
imum-based segmentation is first employed to divide the image
into a number of not overlapped connected areas. Then the verti-
cally central line of body is calculated. The two variables, asym-
metry and brightness, are defined and calculated for each con-
nected area. Section III presents the employed fuzzy system,
CPFIS, and the accompanying three-step minimization training.
The algorithms of the three minimizations are listed in the Ap-
pendix . Section IV delineates the whole process of training. The
training samples are keyed in by radiologists and then some of
them are removed by the abnormal-point cancellations. Six CP-
FISs are employed for the head, vertebrae, chest, pelvic, hand,
and leg regions of body. Section V discusses our experiment.
The prototype CAD system was implemented and trained by
20 sample images. After training, another 82 abnormal images
and 27 normal images were employed to test the performance
of the proposed system. The results in terms of sensitivity and
FP marks per image were satisfactory. Finally, Section VI con-
cludes this paper.

II. BONE-SCINTIGRAPHY PREPROCESSING

The original Tc-99m bone scintigraphy consists of two
256-pixel-wide and 1024-pixel-high images for whole-body
front and back scans. Each pixel is with a 16-bit value in gray
scale. The first step to deal with these images is to choose
some variables that extract information from the images. The
choices must be the most utilized parameters by radiologists in
diagnosing bone scintigraphy, in order to include their expert
knowledge in fuzzy systems. After discussions with radiolo-
gists, we propose to employ asymmetry and brightness as the
input variables of fuzzy systems. Since the bone structure of
human being is vertically symmetric, the asymmetric property
of local areas should be checked. Besides, abnormal bone
will have high scintigraphic values than normal one; thus,
brightness is also important in diagnosis.

A. A Local-Maximum-Based Segmentation

The bone image is checked by areas, but not by pixels. A
single pixel may have a high scintigraphy value, but it is not
taken into account because noise exists in the original image.
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Fig. 2. Growing of a local-maximum area in the segmentation algorithm. “C”:
the center and the maximum pixel, “X”: the pixels in this local-maximum area,
and “�”: the neighborhood.

We use a local-maximum-around segmentation to generate not
overlapped connected areas.

Denote the scintigraphic value at ( ) is . Let be a
threshold value. Denote

Thus, is a set of local maxima. Then sort and denote the
result as a list, , of elements in an order of descending values

where stands for the gray value of the pixel . Therefore, we
have a list of pixels, , in an order of decreasing
values. The last element is greater than or equal to the
threshold . In order to obtain the pixels around each local max-
imum, we develop the following algorithm. The detailed dis-
cussion follows the algorithm. Let be the center of a local
area and be a chosen ratio that any pixel belonging to the area
around should be of a value greater than or equal to ,

. In our experiment, is 2/3 and is 30. As shown in
Fig. 2, the segmentation operation starts with each local max-
imum, checks all the neighboring pixels around this maximum
pixel with values greater than or equal to . Denote all
these local areas as the set , .

Step 1) Let , . is the number
of whole-body pixels.

Step 2) Choose , so that for all the pixels, ,
their indicator-function values , are equal to one,
where is the index of these pixels in the image.

If no such exists, then stop.
Let and .

Step 3) If , then go to Step 2).
Remove the first element of and add

into .
Step 4) The location of is ( ).

Denote all the eight elements at
, around ( ), as .

If any element of these eight elements satisfies
the conditions that and its indicator-
function value being zero, being the index of

in the image, then add into the set as
the last element of the set and set .

Step 5) Go to Step 3).

In Step 1), we define an indicator function that

if the pixel is not yet checked in the algorithm
if the pixel has been checked in the algorithm.

Initially, all the pixels of the whole-body image are not
checked. In Step 2), we take one pixel out of for checking.
We sequentially look at and choose the first
that it is not yet checked. Then, we will grow an area around
the chosen . The variable is the center of this area. The set

is the set of the pixels in this area. The queue
is a queue of pixels for checking. The following steps 3)–5)
add the neighboring pixels around the center into .
In Step 3), if no more neighboring pixels are available for
checking, then the is done and go back to Step 2)
for another center ; otherwise, remove the first element of

for checking and also add this element to . In
Step 4), the growing of the area is performed by adding more
neighboring pixels into . Check the eight pixels around
a pixel . If any pixel of these eight elements
satisfies the conditions that its indicator-function value
being zero, and , then add into the queue

as the last element of the queue and set to be
one. In Step 5), the process goes back to Step 3) for checking
another pixel in the queue .

B. Asymmetry and Brightness Calculations

To calculate asymmetry values, we have to find the vertically
central line of body. Let be the function such that ( )
is on the central line. We use two steps to obtain . The first
step is a centroid method, and the second step is a minimum-of-
difference method to fine-tune the result of the first step.
To reduce the noise effect, we use the sum of neighboring pixels

instead of in the follows.

Step 1) Centroid method

(1)

Step 2) Fine-tuning

(2)

where , , are suitably chosen constants. In our
experiment, is 15 and this distance can reduce most
abnormal-pixel effect that can add bias to the calcu-
lations of the central line. For the head region, is
30 and is 70; for the other regions, is 10 and
is 120.

Denote and as the asymmetry
and brightness values of the local area

, respectively. If the pixel
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at ( ) is not the center, , of a local area, both
and are set to be 0. Otherwise, they are calculated as
follows.

Let and be the arguments in the minimum of the following
differences:

(3)

Then

(4)

From the above calculation, is the difference
between the neighboring pixels and the symmetrically corre-
sponding pixels across the central line. The minimization in (3)
is to roughly eliminate the error in finding the corresponding
left and right bone elements of human bone by (2). It is to match
the pixels in a small square range to take into account of small
body movement. For example, the left coxal bone and the right
coxal bone at pelvic in Fig. 1 are not at the same horizontal
line. The left coxal bone is slightly lower than the right one. To
precisely find the coxal bones, it is necessary to do translations
and rotations of individual pixels in the bone-scintigraphy
images, because the positions of the patients are not exactly
symmetric in the images. To simplify the image processing, the
rough method of calculating is employed.

Let be the average of the whole body. The brightness
is calculated as

(5)

where for convenience we denote in which ( )
is the location of one element . From the equation,
is the average of the differences between the center pixel ( )
and its 80 neighboring pixels with the scaling factor .
Most abnormalities are brighter spots over normal bone or
tissue. Therefore, instead of the center pixel value itself, the
differences between the center pixel and its neighboring pixels
are used here.

To reduce unnecessary spot samples and, thus, decrease com-
putation time in the later learning, the following three conditions
are used to remove many normal local maxima. The values of
the thresholds and the parameters in these conditions are de-
cided by the later experiments.

Condition 1: If , then
.

In bone scintigraphy, abnormalities have high pixel values.
Therefore, a threshold of can be suitably chosen to
remove low-pixel-value normal samples.

Condition 2: If , then
.

Both abnormalities and individual bone elements can have
high pixel values, but the sizes of the former are usually smaller
than those of the latter. Thus, if the size of some local maximum
is greater than a threshold , the local region is on a normal
bone element.

Condition 3: If , then
.

It is observed that if the asymmetry values of true ab-
normalities are larger than a positive number , their
brightness values will be greater than -based values,

. All these three conditions and
the parameters and thresholds in them are only based on the
observations on samples. When they are applied to other
images, abnormalities may be mistakenly included to become
false negatives (FNs). In our experiments, no abnormalities in
either the training images or the testing images were taken to
be normal by these three conditions. Therefore, we adopt these
conditions to remove many normal local maxima in this paper.

III. A FUZZY SYSTEM WITH A THREE-STEP

MINIMIZATION APPROACH

A. Characteristic-Point-Based Fuzzy Inference System

Let be the number of fuzzy rules and be the dimension
of the input . The rule base of a CPFIS is

...

where and , , , are fuzzy sets in
the antecedent and consequent parts of fuzzy rules. The mem-
bership function of is a bell-shaped function with center

and spread :

(6)

We call , , as characteristic points
(CPs). The membership function of is also chosen as a bell-
shaped function with center and spread :

(7)

There are three steps in making an inference of a CPFIS:

Step 1) Calculate the firing strength , , for each
fuzzy rule

(8)

Step 2) Form the output fuzzy sets
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Fig. 3. A systematic approach by three minimization steps is proposed to train
the CPFIS.

Step 3) Defuzzify the output fuzzy sets by using the simu-
lated center-of-area method of Lin and Lee [33]

(9)

The training of CPFIS is to decide the number of fuzzy rules,
and the parameters of these rules. A systematic approach by
three minimization steps is proposed as shown in Fig. 3. The
first minimization is based on , the spreads of the membership
functions of the output fuzzy sets. The number of fuzzy rules
will be reduced from , the number of training data, to , .
Then the second minimization is based on , the means of the
membership functions of the output fuzzy sets. After this step,
the number of fuzzy rules is further reduced to be , .
The number is a small number by adjusting a threshold value
of column sums. Finally, the third minimization is based on ,

, and , the spreads of the membership functions of the
input fuzzy sets. This step is a fine-tuning of parameters in fuzzy
sets but not a determination of the number of fuzzy sets. The
aim of this fine-tuning is to enhance the precision performance
of CPFIS. The follows are the details of the proposed systematic
training process of CPFIS.

B. Gradient-Projection Method

Initially, all training data are mapped to fuzzy rules. The map-
ping is performed on all data points ( ), , ,
that are assigned to be the means of the member-
ship functions of the input fuzzy sets, and are assigned to be
the means of the membership functions of the output fuzzy sets.
That is,

Each data point is mapped to a fuzzy rule. Thus, if there are
data points, then initially there are fuzzy rules. After the

mapping, the spreads of the membership functions of the input

fuzzy sets, , and the spreads of the membership functions
of the output fuzzy sets, , remains to be set. We set

where is a chosen constant. In this paper, is set to be
are the same for all fuzzy rules in this step. They will be different
and later fine-tuned in the back-propagation process. The firing
strength of a rule is

and the fuzzy inference output is

The weights , , are initially set to be before
the minimization.

After these settings, we can take the training of CPFIS as a
constrained minimization problem:

(10)

A gradient projection method is employed to solve this problem.
The details are included in Appendix I. It is noted that (10) is a
general nonlinear equation in the variables . Thus, the
solution obtained by the gradient-projection method is usually
a local minimum.

After the algorithm, many constraints become active
constraints, i.e., . The approximation “ ” used here is to
take into account the precision of numerical calculations. In the
experiments, we label a constraint as an active constraint if
is less than a small positive number. The training data of these
active constraints can be removed from being candidates of CPs,
since the weights, , of these fuzzy rules are much smaller
than those of inactive constraints. It is from the approximation
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where is a function that indicates is the numbering
of the th fuzzy rules in the original fuzzy rules. Thus, the
indexes of active constraints are not in the output domain of .

C. Gauss–Jordan-Elimination-Based Column Elimination

The weights obtained from the gradient-projection method
for all the fuzzy rules are further utilized in the Gauss–Jordan-
elimination-based column elimination. The minimization of this
step is based on

(11)

This is a quadratic function of the variables .
Let

Then, (11) can be rewritten as

(12)

The necessary condition for the solution is that the first deriva-
tives of are zero. Take derivatives of (12), we have

...

...

...
...

...

...

...

...

(13)

Then, a modified Gauss–Jordan-elimination method is em-
ployed to solve the linear equations, (13). The details of the
algorithm are included in Appendix II. During the process, a
threshold is set to trim redundant columns in (13). The corre-

Fig. 4. Flow chart of training.

sponding of these redundant columns are also removed.
It is noted that the column-sum threshold here is aimed to
choose the most representational columns, but not only to avoid
the matrix inverse of a zero-determinant matrix in the original
Gauss–Jordan elimination. Thus, the values of the threshold
are increased gradually and the number of fuzzy rules are then
decreased. After this step, the number of fuzzy rules have been
decided. The numbering function is changed to indicate
that the th column, which is not removed in the algorithm, is
the -th fuzzy rule in the original fuzzy rules.

D. Back-Propagation Tuning

After the second minimization, there remain , , fuzzy
rules. The third minimization is based on ,

, :

(14)

The details of the back-propagation process is described in Ap-
pendix III. It is noted that the means of the membership func-
tions of the input fuzzy sets, , are not variables in the

minimization. We assign , ,
. These positions are the obtained CPs from

the Gauss–Jordan-elimination-based column elimination.

IV. TRAINING

The flow chart of training is shown in Fig. 4. The system reads
a scintigraphic image, calculates the asymmetry and brightness
values of the segmented areas of the image, makes inference
to CPFIS, and then shows the result to radiologists. Radiolo-
gists inspect the image and add missing abnormal locations as
training samples. Besides abnormal locations, radiologists can
also add normal locations as training samples when some area
of the image should be diagnosed as normal pixels.

Let sample ( ) denote a sample has asymmetry value , and
brightness value . These training samples are further processed
by the following cancellation.
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Fig. 5. Rough segmentation of six parts on the sample image in Fig. 1.

Abnormal-point cancellation: for an abnormal sample
( ) and a normal sample ( ), if and

, then delete ( ).
To the radiologists’ knowledge, if both the asymmetry and

brightness values of one point are smaller than a normal point,
then this point should be also a normal point. Thus, if this point
is an abnormal point, then we delete it. The removing of contra-
dictory points can make the training of CPFIS more effective.
After the cancellations of training samples, the three-step mini-
mization learning is applied. The process is iterated until no new
images exist or radiologists are satisfied with the current system
performance.

To take into account varied sensitivity in different parts of
body, six CPFISs are used for 6 regions of body: head, verte-
brae, chest, spine, hand, and leg. Fig. 5 shows the segmentation
of six parts on the sample image in Fig. 1. In this paper, the
segmentation is a rough and automatic operation by assigning
fixed ratios between parts. It is better that the segmentation can
be adaptive since human body is of various sizes and shapes,
but for simplicity, we take fixed segmentation operations. The
results were acceptable as shown in the following experiment.

V. EXPERIMENT

To test the proposed system, we implemented a prototype
system and performed experiments on a database in the depart-
ment of nuclear medicine, National Cheng Kung University
Hospital, Tainan, Taiwan, R.O.C. The scintigraphy-imaging
device is a gamma camera (Siemens, E-cam, USA). The
patients were injected with Technetium-99m-MDP (methylene
diphosphonate). First, 20 whole-body scintigraphic images
were chosen to train the proposed CPFIS. Some of them had
minute abnormalities, or contained abnormalities in the head

part which was the most infrequent part having abnormalities.
Altogether, they consisted of much information about scintig-
raphy abnormalities and, thus, became good training samples.
After training, 82 abnormal images and 27 normal images
were used to test the system. These testing cases were taken
from the same database, excluding the 20 training cases and
the cases in which abnormalities were located on back views.
For simplicity, we considered only front-view diagnosis in the
experiment. The results are detailed in the follows.

A. Analysis of the 20 Training Images

When a sample image was opened, the local-maximum-based
segmentation was first performed. As shown in Table I, there
were 13 952 normal spots and 104 abnormal spots in the 20
training sample images after the segmentation. Originally,
radiologists labeled 110 abnormal spots on these 20 images.
Thus, there are six (110–104) abnormal spots which are not
local maxima. The minimum of of these 104 abnormal
spots is 12. Therefore, was set to be 12 in Condition 1.
After the process of Condition 1, normal spots had been greatly
eliminated to be 8486, while none of the 104 abnormal spots
was removed.

The maximum of of the 104 abnormal spots is 92.
Thus, was set to be 92 in Condition 2. After Condition 2,
normal spots were further decreased to be 8214. To decide the
parameters in Condition 3, the distribution of abnormal spots in

and was plotted and the line was suitably
chosen as shown in Fig. 6. The parameters , , and were
set to be 0, 5/6, and 40, respectively. There is no definite rule in
choosing the line. To be conservative, we chose the line at a dis-
tance to the right of all the abnormal points. After Condition 3,
the number of normal spots was 8186. Although only 28 normal
spots were removed by Condition 3, they were all high-asym-
metry spots and very likely misdiagnosed.

After the image preprocessing, there were 8186 normal spots
and 104 abnormal spots in the 20 training sample images. Only
5.5% (6 of 110) abnormal spots were eliminated, but 41.3%
(5766 of 13 952) normal spots including a lot of normal pixels
of large asymmetry or brightness values were also eliminated.

Table II shows the means and standard deviations of the asym-
metry and brightness values in the 8186 normal spots and the
104 abnormal spots after the preprocessing of Condition 3. The
mean of asymmetry values in abnormal spots is larger than that
in normal spots, and the difference is 23.11 which is greater than
the standard deviation of asymmetry values in normal spots and
that in abnormal spots. Similarly, the mean of brightness values
in abnormal spots is larger than that in normal spots, and the dif-
ference is 37.85 which is greater than the standard deviation of
brightness values in normal spots and slightly smaller than that
in abnormal spots. These significant differences show that the
two variables in (4) and in (5) are effective
variables in classifying abnormal and normal spots.

B. Training

The training process was as described in Section IV. There
were six CPFISs for the six parts: head, vertebrae, chest, pelvic,
hand, and leg. Initially, one default abnormal point of large
asymmetry and brightness values, 80 and 120 in this experi-
ment, and one default normal point of both zero asymmetry and
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TABLE I
NUMBER OF NORMAL AND ABNORMAL SPOTS IN THE 20 TRAINING IMAGES AFTER THE SEGMENTATION AND CONDITIONS

Fig. 6. Distribution of abnormal spots in the 20 training images after the
process of Condition 2. To the right of the line, there are no abnormal spots.
This line is used in Condition 3.

TABLE II
MEANS AND STANDARD DEVIATIONS OF THE ASYMMETRY AND BRIGHTNESS

VALUES IN NORMAL AND ABNORMAL SPOTS

brightness values were added to each part. Different scaling
factors, 20 and 30, were used for asymmetry and brightness
values, respectively. Therefore, initially two input-output pairs

, and were added to all six parts. Table III
lists the numbers of true abnormalities, the added abnormal
and normal points of the 20 training images by the radiologist’s
diagnosis. The samples S1, S2, S3, S6, S14, and S18 had
added abnormal points in all six regions. Besides the added
abnormal points, the samples S3, S3, etc. provided corrections
for too many abnormalities marked by the CAD system; some
normal points were added in these cases. It is noted that the
diagnosis and the learning were alternately operated. One time
of learning of the six CPFISs followed one diagnosis of an
image. Thus, the diagnosis and learning were in an incremental
mode, but not in a batch mode that only one time of learning
was performed at the end of diagnosing the last image S20. It
also merits attention that the added abnormal points were not
necessarily the real abnormal positions in the training images.

Although these added points are actually not real abnormalities,
radiologists may think some points of the training images had
better be marked as abnormal points in order to increase the
diagnosis performance of the proposed system.

The training was in the sequence: diagnosing and adding
abnormal points to S1 learning diagnosing and adding
normal points to S1 learning diagnosing and adding
abnormal points to S2 diagnosing and adding
normal points to S20 learning. Some images had no added
abnormal/normal points and then their following learning
operations were not performed. After the learning of S20, one
sequence of training was finished. It is better to check if some
abnormalities marked by adding abnormal points in the earlier
samples may have been changed to be normal, or too many
more abnormal marks have been made due to the learning of the
later samples. Thus, the sequence of training can be conducted
once more. In our experiment, few marks were added by the
radiologist in this second sequence of training. Therefore, the
training was finished after two sequences of training.

The left and right sides of Fig. 7 show the marks of S1 and S20
after the two sequences of training. There were two abnormal
points (circles) on the pelvic, one abnormal point on the leg, and
three normal point (triangle) on the pelvic region of S1 added
by the radiologist. The CAD system labeled 23 abnormalities
(squares) on S1. The four arrow-pointed locations are true abnor-
malities. For S20, no abnormal or normal points were added. The
CAD system labeled 10 abnormalities on the whole body. One
arrow-pointed location at the right hand is a true abnormality.

Figs. 8–10 show the fuzzy rules of the trained system. All the
input and output membership functions are of Gaussian shape.
These six figures correspond to the six CPFISs for the head, ver-
tebrae, chest, pelvic, hand, and leg regions, respectively. In each
figure, one row represents one fuzzy rule. We use the fuzzy terms
small, slightly small,medium, slightly large, and large to label the
input membership functions which centers are approximately at
0, 1, 2, 3, and 4, and the output membership functions which cen-
ters are approximately at 0.0, 0.4, 0.5, 0.6, and 1.0, respectively.

In all the six fuzzy systems, the first two fuzzy rules can be
conveniently described as follows.

If asymmetry is large, and brightness is large, then is
large.
If asymmetry is small, and brightness is small, then is
small.

The first rule says that if both the asymmetry and brightness
values are large, then the location is abnormal. Contrarily, the
second rule says that if both the asymmetry and brightness
values are small, then the location is normal. All the other five
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TABLE III
RADIOLOGIST’S DIAGNOSIS OF THE 20 TRAINING IMAGES DURING TRAINING FROM IMAGE S1 TO IMAGE S20 IN A SEQUENCE

Fig. 7. The training abnormal points (circles) and normal points (triangles)
were gradually added to the 20 training images. The left is the first image S1,
and the right is the final image S20.

rule sets have the same two fuzzy rules. These two rules match
the same knowledge as radiologists have when they inspect and
diagnose scintigraphic images.

In the left-hand side of Fig. 8, the third rule can be conve-
niently described as follows.

If asymmetry is small, and brightness is slightly large, then
is slightly large.

In the right-hand side of Fig. 8 and the right-hand side of Fig. 10,
the third rules can be conveniently described as follows.

If asymmetry is small, and brightness is medium, then is
medium.

In the left-hand side of Fig. 9, the third rule can be conveniently
described as follows.

If asymmetry is slightly small, and brightness is slightly
small, then is slightly large.

In the right-hand side of Fig. 9, the third and fourth rules can be
conveniently described as follows.

If asymmetry is small, and brightness is slightly large, then
is medium.

If asymmetry is slightly small, and brightness is slightly
small, then is large.

Finally, in the left-hand side of Fig. 10, the third and fourth rules
can be conveniently described as follows.

If asymmetry is slightly small, and brightness is slightly
large, then is medium.
If asymmetry is medium, and brightness is small, then is
slightly small.
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Fig. 8. Left: the three fuzzy rules for the head part; right: the three fuzzy rules for the vertebrae part after training.

Fig. 9. Left: the three fuzzy rules for the chest part; right: the four fuzzy rules for the pelvic part after training.

All these third and fourth fuzzy rules describe diagnosis rules
around the threshold . If the asymmetry or brightness
values of one location are near the threshold, the local property
may not be effectively described by the first two rules. Thus,
by learning, the CPFIS generates the third and the fourth fuzzy
rules to increase the diagnosis sensitivity around the threshold.
In these fuzzy-rule figures, a spike-like output membership
function makes its fuzzy rule less important than the other
fuzzy rules due to the near-zero in (9). For example, the
second rule in the right of Fig. 8 is less important than the other
two fuzzy rules.

These diagnosis rules can be further illustrated by plotting
the threshold curves on the asymmetry-brightness plane as in
Fig. 11. The diagnosis of the CPFISs for the six regions are
plotted in Fig. 11(a)–(f), respectively. All these plots describe
a fundamental knowledge in radiologists that if both the asym-
metry and brightness values of one location are large, then it is
an abnormality. The value near the left-below corner is less
than 0.4. Contrarily, the value near the right-up corner is more
than 0.6. The third and fourth fuzzy rules make these threshold
curves not simply left-up to right-below curves. For example,
the 0.6-threshold curve in Fig. 11(d) has a turning at (1.5, 1.1).
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Fig. 10. Left: the four fuzzy rules for the hand part; right: the three fuzzy rules for the leg part after training.

Fig. 11. The plotting of the marking made by the proposed system after training on the whole asymmetry-brightness plane. (a) Head, (b) vertebrae, (c) chest, (d)
pelvic, (e) hand, and (f) leg. Three contours for y = 0:4, 0.47, and 0.6 are shown.

The graphical representation of the fuzzy rules can help radiol-
ogists understand the underlying mechanism of computer diag-
nosis. In the following, we discuss the setting of the three min-
imization algorithms as in Section III.

1) Gradient-Projection Algorithm: The training data keyed
in by radiologists as in Table III were further processed by the

abnormal-point cancellation as described in Section IV. This op-
eration was performed before each time of learning. The size of
training data was small in this experiment. Nonetheless, it was
enough to build an effective CPFIS. For example, the numbers
of training data were 4, 7, 7, 10, 12, and 6 for the six CPFISs in
the six regions of the body, respectively.
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TABLE IV
ABNORMAL LOCATIONS OF THE 82 TESTING (ABNORMAL) IMAGES

Suppose the number of data in some region is . Initially,
the spread of the output fuzzy membership function was set
to be . The threshold of was set to be . If any
was less than this threshold, then . Thus, from (10),

became an active constraint. The corresponding training
data for this active constraint, , was removed from the
candidates of being characteristic points. Initially, all training
data were all candidates, but after 200 epochs of the gradient-
projection algorithm, there remained candidates, .
After processing, the algorithm not only reduced the number of
candidates, but also provided relative weights between training
data by the final values of .

2) Gauss–Jordan-Elimination-Based Column Elimina-
tion: From (13), the column elimination is based on ,
which is decided by values after the gradient-projection
algorithm. When the threshold of column sums increases, more
candidate points are removed. The threshold of column sums
was initially set to be 0.001, and then doubled at each iteration
until the threshold was after six epochs.
After the algorithm, the number of the CPs were determined.
Let it be , . In our experiment, was either 3 or 4.

is the number of fuzzy rules.
3) Back-Propagation Tuning: After the number of CPs

were found, the other parameters were tuned by back-propa-
gation learning. There are number of ,
the spreads of the membership functions of the input fuzzy sets,

number of , the means of the membership
functions of the output fuzzy sets, and number of

, the spreads of the membership functions of output fuzzy
sets. The back-propagation learning was performed with 20 000
epochs. It took less than 20 s of computation on a PC of Pen-
tium IV 2.4-GHz CPU, and 512 MB memory. The operating
system is Windows 2000 Server, and the programming software
is JBuilder 4.

C. Testing

There were 82 abnormal images and 27 normal images for
testing. The real abnormal locations in the 82 abnormal images
are listed in Table IV. The abnormal locations are broadly dis-
tributed over the whole body from skull to knee. Among these
locations, spine is the area containing the largest number of real
abnormalities, followed by pelvic and knee.

We employed a free-response receiver operating character-
istic (FROC) [34], [11], [15] in terms of true positive (TP) frac-
tion and the mean number of FPs per image to evaluate the
performance of the system. Fig. 12 shows the diagram of the
FROC curve. When the mean numbers of FPs per image in-
crease from 2.0 to 63.6, the sensitivities increase from 0.359
to 0.960. Table V shows the performance of the CAD system
at thresholds 0.47 and 0.5. At the threshold 0.47, the sensitivity
and the mean number of FP per image are 0.92 and 37, respec-
tively. If the threshold is set to a higher value, 0.5, the sensitivity
and the mean number of FP per image are 0.86 and 24, respec-
tively.

Tables VI and VII show the CAD performance in different
regions when the threshold is set to be 0.47. There are 248
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Fig. 12. The diagram of the FROC curve for the proposed CAD system.

TABLE V
PERFORMANCE OF THE CAD SYSTEM AT THRESHOLDS 0.47 AND 0.5

TABLE VI
DETECTION RATES AND FP MARKS OF THE 82 ABNORMAL TESTING

IMAGES IN SIX PARTS AT THRESHOLD 0.47

true abnormalities on the 82 abnormal images. Except head, the
number of abnormalities in the other five regions are about the
same. Both the hand region and the leg region have the highest
detection rate, 98%, while the head region has the lowest de-
tection rate, 57%. The other three regions have more than 85%
detection rates. Totally, 227 abnormalities are detected. The de-
tection rate is 92% (227 of 248). Besides detection rates, the
numbers of FP marks in all regions are also listed. In the 82 ab-
normal images, the vertebrae region has the largest number of
FP marks, 918, while the head region has the smallest number
of FP marks, 46. In the 27 normal images, the vertebrae region
has the largest number of FP marks, 410, while the head region
has the smallest number of FP marks, 22. From these figures,
the proposed CAD system performs better in the hand and leg
regions, but worse in the head and vertebrae regions.

In many images, the heads are slightly rotated which makes
the asymmetry variable less effective in comparing the left and

TABLE VII
FP MARKS OF THE 27 NORMAL TESTING IMAGES IN SIX PARTS AT

THRESHOLD 0.47

Fig. 13. Diagnosis result of abnormal image no. 8. Left: original, and right:
diagnosis. The five arrow-pointed locations are true abnormal locations of the
patient. There are 11 marks. Four of them are true abnormalities, and the other
seven are FPs. One FN is at the right leg. The TP at the left pelvic is easy to be
missed because normal pelvic at this location is also bright.

the right parts of head. For vertebrae, it is situated at the central
line of body. Many abnormalities in vertebrae are at or near the
central line or in equal distances to the central line in pairs. The
asymmetry values in vertebrae tend to be zero in these cases.
These properties partially account for the worse performance
in the head and vertebrae regions. We would like to demon-
strate the assistance given by the proposed system in finding
and scoring minute abnormalities in the following two figures.

The first figure is Fig. 13, the no. 8 abnormal image of the
82 abnormal testing images. The five arrow-pointed locations
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Fig. 14. Diagnosis result of abnormal image no. 28. Left: original, and right:
diagnosis. The 26 arrow-pointed locations are true abnormal locations of the
patient. There are 35 marks. Twenty-two of them are true abnormalities, and
the other 13 are FPs. One FN is at the right pelvic. There are three TPs which
are included in the same local-maximum areas of the other three neighboring
marks as indicated by the three polygons. Although not all true abnormalities are
labeled, the 35 warning marks can aid radiologists not to miss some abnormal
locations when the patients have multiple abnormal locations.

are true abnormal locations of the patient. Eleven squares were
marked in the right-hand side of Fig. 13. Four of them are true
abnormalities, and the other seven are FPs. One FN is at the
right leg. The TP at the left pelvic is easy to be missed because
normal pelvic at this location is also bright. It was correctly
marked by the CAD system. Radiologists were cautioned by
the proposed system to inspect this location for not missing this
highly possible abnormality.

The second figure is Fig. 14, the no. 28 abnormal image of
the 82 abnormal testing images. The patient has a diffuse pat-
tern that 26 abnormalities exist in rib, spine, pelvic, and hand.
There are 35 marks. Twenty-two of them are true abnormali-
ties, and the other 13 are FPs. There are three TPs which are
included in the same local-maximum areas of the other three
neighboring marks as indicated by the three polygons. Only one
FN is at the right pelvic. Although not all true abnormalities are
labeled, the 35 warning marks can aid radiologists not to miss
some abnormal locations when the patients have multiple ab-
normal locations. When the user clicks the mouse on a mark,
the asymmetry, brightness, and score values are shown in the
status bar of the image by the system. The automatic marking
and scoring ability of the system aid radiologists by providing
extra information from a second reader.

VI. CONCLUSION

In this paper, a CAD system for bone scintigraphy was pro-
posed. After consulting radiologists, asymmetry and brightness

were the two chosen variables to be the inputs of the CAD
system. Since the diagnosis is by areas but not by pixels,
their values were calculated on a number of not overlapped
connected areas. These areas were formed by a local-max-
imum-based segmentation on the whole body. Also, in order
to calculate the asymmetry, a method to generate the verti-
cally central line of body was presented. A CPFIS was em-
ployed to implement the CAD system. Three minimization al-
gorithms, gradient-projection method, Gauss–Jordan-elimina-
tion-based column elimination, and back-propagation tuning,
were used to train the proposed CPFIS. By these algorithms,
the number of fuzzy rules were gradually decreased from the
number of training samples to a small number. To make the
learning of CPFIS more effective, abnormal-point cancella-
tions were performed to filter off improper samples keyed in
by radiologists. The whole body was roughly divided into the
head, vertebrae, chest, pelvic, hand, and leg regions, and six
CPFISs were used for each region. Experiments were con-
ducted to test the proposed method. Twenty samples were
used for training, and another 82 abnormal images and 27
normal images were used for testing. We employed a FROC
method with the mean number of false positives (FPs) and the
sensitivity as performance indexes to evaluate the proposed
system. The sensitivity was 91.5% (227 of 248) and the mean
number of FPs was 37.3 per image. By the different detection
rates and numbers of FP marks in six regions, the proposed
CAD system performed better in the hand and leg regions, but
worse in the head and vertebrae regions. Two of the testing
images were further elucidated to demonstrate the assistance
provided by the CAD system in finding minute abnormalities.
The high sensitivity and moderate numbers of FP marks per
image shows that the proposed method can provide an effec-
tive second-reader information to radiologists in the diagnosis
of bone scintigraphy.

APPENDIX I
GRADIENT-PROJECTION METHOD

The gradient-projection method is a method for solving con-
strained minimization problems. The following gradient-projec-
tion algorithm is modified from [35] to tackle our problem. The
modification is primarily for the settings of precision thresh-
olds of numerical calculations. Let and be
some chosen thresholds for the spreads of the membership func-
tions of output fuzzy sets, , and the elements of the projection
vector of the gradient, respectively. and
are set to be in this paper. If , then the
constraint is taken as an active constraint. Let be the
number of training data, and the vector be . The
function in the following is the (10).

Step 1) Let , . A matrix
is set as

(15)
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The first row is all ones. Then, the remaining rows
are formed by the active constraints. Each element
in corresponds to a row in : ,

being at the th column. Thus, is a matrix of
rows and columns.

Step 2) Calculate , and
.

Step 3) If , find and achieving,

respectively

is feasible

Set to and return to Step 1).
Step 4) If , find

.
Case (a) If , for all corresponding to active con-

straints, stop;
satisfies the Kuhn-Tucker conditions,

Case (b) Otherwise, delete the row from corresponding
to the constraint with the most negative component
of and return to Step 2).

After the algorithm, are decided, which can be taken as
weights between training data.

APPENDIX II
GAUSS–JORDAN-ELIMINATION-BASED COLUMN ELIMINATION

The Gauss–Jordan elimination is a method to solve linear
equations [36]. We modified the method to perform column
elimination. From (13), we have , where is ,

is 1, is 1, and is . The set here is the final
result from the algorithm in Appendix I. Thus, is the number
of training data minus the number of active constraints. Choose
a threshold .

Step 1) Form the matrix . Let the index be
1. Some columns of will be deleted, and thus, the
column dimension of is gradually decreased in the
iteration of the algorithm.

Step 2) If , then the th
column of and the th element of are both
deleted, and go to Step 5); otherwise, find

.

Step 3) Exchange the th and th rows of . Divide the ele-
ments of the th row by .

Step 4) All the other rows, , , are
updated by adding to ,

.
Step 5) If is equal to the column number of , then stop;

otherwise, is set to , and go to Step 2).

After the algorithm, the row dimension of , , is decided.
The larger value is, the smaller number is.

APPENDIX III
BACK-PROPAGATION TUNING

For convenience, the derivatives in the back-propagation
tuning are listed in the following:

The algorithm is an iteration of the updating of parameters,
, , and
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where and are the learning rate and
the momentum constant, respectively.

REFERENCES

[1] K. Van Laere, K. Casier, D. Uyttendaele, W. Mondelaers, C. De Sadeleer,
M. Simons, and R. Dierckx, “Technetium-99m-MDP scintigraphy and
long-term follow-up of treated primary malignant bone tumors,” J. Nucl.
Med., vol. 39, no. 9, pp. 1563–1569, Sept. 1998.

[2] T. Leitha, “Rapid changes in the scintigraphic pattern in Tc-99 m DPD
whole-body scanning in metabolic bone disease,” Clin. Nucl. Med., vol.
23, no. 11, pp. 784–785, Nov. 1998.

[3] S. H. Kim, S. K. Chung, Y. W. Bahk, Y. H. Park, S. Y. Lee, and H.
S. Sohn, “Whole-body and pinhole bone scintigraphic manifestations
of Reiter’s syndrome: Distribution patterns and early and characteristic
signs,” Eur. J. Nucl. Med., vol. 26, no. 2, pp. 163–170, Feb. 1999.

[4] F. Pons, L. Alvarez, P. Peris, N. Guanabens, S. Vidal-Sicart, A. Monegal,
J. Pavia, A. M. Ballesta, J. Munos-Gomez, and R. Herranz, “Quantita-
tive evaluation of bone scintigraphy in the assessment of Paget’s disease
activity,” Nucl. Med. Commun., vol. 20, no. 6, pp. 525–528, June 1999.

[5] B. D. Nguyen, B. B. Chin, and D. P. Beall, “Gardner’s syndrome with
bone scintigraphic and CT demonstration,” Clin. Nucl. Med., vol. 23,
no. 4, pp. 234–235, Apr. 1998.

[6] A. Malich, C. Marx, M. Facius, T. Boehm, M. Fleck, and W. A. Kaiser,
“Tumour detection rate of a new commercially available computer-aided
detection system,” Eur. Radiol., vol. 11, pp. 2454–2459, 2001.

[7] H. Sittek, K. Herrmann, C. Perlet, I. Kunzer, M. Kessler, and M. Reiser,
“Computer-assisted evaluation of mammography images. Initial clinical
experiences” (in German), Radiologe, vol. 37, no. 8, pp. 610–616, Aug.
1997.

[8] L. Garvican and S. Field, “A pilot evaluation of the R2 image checker
system and users’ response in the detection of interval breast cancers on
previous screening films,” Clin. Radiol., vol. 56, no. 10, pp. 833–837,
Oct. 2001.

[9] I. Leichter, S. Fields, R. Nirel, P. Bamberger, B. Novak, R. Lederman,
and S. Buchbinder, “Improved mammographic interpretation of masses
using computer-aided diagnosis,” Eur. Radiol., vol. 10, no. 2, pp.
377–383, 2000.

[10] B. Verma and J. Zakos, “A computer-aided diagnosis system for digital
mammograms based on fuzzy-neural and feature extraction techniques,”
IEEE Trans. Inform. Tech. Biomed., vol. 5, pp. 46–54, Mar. 2001.

[11] H. D. Cheng, Y. M. Lui, and R. I. Freimanis, “A novel approach to micro-
calcification detection using fuzzy logic technique,” IEEE Trans. Med.
Imag., vol. 17, pp. 442–450, June 1998.

[12] S. Yu and L. Guan, “A CAD system for the automatic detection of clus-
tered microcalcification in digitized mammogram films,” IEEE Trans.
Med. Imag., vol. 19, pp. 115–126, Feb. 2000.

[13] H. Li, Y. Wang, K. J. R. Liu, S. C. B. Lo, and M. T. Freedman, “Com-
puterized radiographic mass detection-Part I: Lesion site selection by
morphological enhancement and contextual segmentation,” IEEE Trans.
Med. Imag., vol. 20, pp. 289–301, Apr. 2001.

[14] , “Computerized radiographic mass detection-Part II: Decision sup-
port by featured database visualization and modular neural networks,”
IEEE Trans. Med. Imag., vol. 20, pp. 302–313, Apr. 2001.

[15] M. G. Penedo, M. J. Carreira, A. Mosquera, and D. Cabello, “Com-
puter-aided diagnosis: A neural-network-based approach to lung nodule
detection,” IEEE Trans. Med. Imag., vol. 17, pp. 872–880, Dec. 1998.

[16] K. Sato, K. Sugawara, Y. Narita, and I. Namura, “Consideration of the
method of image diagnosis with respect to frontal lobe atrophy,” IEEE
Trans. Nucl. Sci., vol. 43, pp. 3230–3239, Dec. 1996.

[17] M. C. Clark, L. O. Hall, D. B. Goldgof, R. Velthuizen, F. R. Murtagh, and
M. S. Silbiger, “Automatic tumor segmentation using knowledge-based
techniques,” IEEE Trans. Med. Imag., vol. 17, pp. 187–201, Apr. 1998.

[18] Y. A. Tolias and S. M. Panas, “A fuzzy vessel tracking algorithm for
retinal images based on fuzzy clustering,” IEEE Trans. Med. Imag., vol.
17, pp. 263–273, Apr. 1998.

[19] H. Ganster, A. Pinz, R. Röhrer, E. Wildling, M. Binder, and H. Kittler,
“Automated melanoma recognition,” IEEE Trans. Med. Imag., vol. 20,
pp. 233–239, Mar. 2001.

[20] W. Park, E. A. Hoffman, and M. Sonka, “Segmentation of intrathoracic
airway trees: A fuzzy logic approach,” IEEE Trans. Med. Imag., vol. 17,
pp. 489–497, Aug. 1998.

[21] K. H. Chuang, M. J. Chiu, C. C. Lin, and J. H. Chen, “Model-free func-
tional MRI analysis using kohonen clustering neural network and fuzzy
c-means,” IEEE Trans. Med. Imag., vol. 18, pp. 1117–1128, Dec. 1999.

[22] P. D. Acton, L. S. Pilowsky, H. F. Kung, and P. J. Ell, “Automatic
segmentation of dynamic neuroreceptor single-photon emission tomog-
raphy images using fuzzy clustering,” Eur. J. Nucl. Med., vol. 26, no.
6, pp. 581–590, June 1999.

[23] M. Hanmandlu, S. N. Tandon, and A. H. Mir, “A new fuzzy logic based
image enhancement,” Biomed. Sci. Instrum., vol. 33, pp. 590–595, 1997.

[24] P. R. Innocent, M. Barnes, and R. John, “Application of the fuzzy
ART/MAP and MINMAX/MAP neural network models to radiographic
image classification,” Artif. Intell. Med., vol. 11, no. 3, pp. 241–263,
Nov. 1997.

[25] R. P. Velthuizen, L. O. Hall, and L. P. Clarke, “Feature extraction for
MRI segmentation,” Artif. Intell. Med., vol. 9, no. 2, pp. 85–90, Apr.
1999.

[26] L. A. Zadeh, “Fuzzy sets,” Inform. Contr., vol. 8, pp. 338–353, 1965.
[27] , “Fuzzy algorithm,” Inform. Contr., vol. 12, pp. 94–102, 1968.
[28] , “Outline of a new approach to the analysis of complex systems

and decision processes,” IEEE Trans. Syst., Man, Cybern., vol. SMC-3,
pp. 28–44, 1973.

[29] T. K. Yin, “Fuzzy modeling and control: A characteristic-point ap-
proach,” Ph.D. dissertation, Purdue Univ., West Lafayette, IN, 1996.

[30] T. K. Yin and C. S. G. Lee, “A characteristic-point-based fuzzy infer-
ence system,” in Proc. 1996 Asian Fuzzy Syst. Symp., Taiwan, 1996, pp.
533–538.

[31] S. Guillaume, “Designing fuzzy inference systems from data: An
interpretability-oriented review,” IEEE Trans. Fuzzy Syst., vol. 9, pp.
426–443, June 2001.

[32] L. A. Zadeh, “Soft computing and fuzzy logic,” IEEE Software Mag.,
pp. 48–56, Nov. 1994.

[33] C. T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control
and decision system,” IEEE Trans. Comput., vol. 40, pp. 1320–1336,
1991.

[34] J. A. Swets and R. M. Pickette, Evaluation of Diagnostic Systems—
Methods from Signal Detection Theory. New York: Academic, 1982.

[35] D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed.
Reading, MA: Addison-Wesley, 1989.

[36] S. Nakamura, Applied Numerical Methods in C. Englewood Cliffs,
MJ: Prentice-Hall, 1993.

Authorized licensed use limited to: National Cheng Kung University. Downloaded on September 1, 2009 at 11:09 from IEEE Xplore.  Restrictions apply. 


