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Fig. 2. Simulation results, presenting the fraction of cases in which differences
between pairs of estimated ARIs were found to be significant, at the = 5%
level. The horizontal axis gives the ARI of the first signal (ARI , as used in
generating the simulated data). That of the second signalARI = ARI +

�, where� is the difference in the ARIs.ARI andARI range from 0 to
9, and 200 pairs of signals were simulated.

of the noise estimated from the patient recordings. This was repeated
200 times. The ARI was then estimated for each of the simulated sig-
nals, and the bootstrap method applied in order to test the significance
of any difference in ARI estimates. The results (Fig. 2) show that, when
the “true” ARIs (i.e., the ones corresponding to the filter actually used
in generating the simulated signals) are identical (� = 0), the expected
� = 5% false positive rate is approximated. However, fewer false posi-
tives are detected forARI > 5, since here the estimator generally finds
the correct ARI such that there is no difference in ARI estimates. As the
difference between the ARIs increases (� > 0), the fraction of cases
in which significant differences are found also increases—as expected.

IV. DISCUSSION AND CONCLUSION

The bootstrap method presented provides a relatively simple means
for statistical analysis of theARI. Themethod is intuitivelymeaningful,
and simulation studies provided further supporting evidence for its use.
The results with the patient data indicate that the ARI estimate is not
always robust. This had been suspected from the wide variations over
time in ARI estimates from the patients, but now the bootstrap method
provides confirmation that even within a given recording, ARI esti-
mates can be inconsistent. Short-term variations in autoregulatory ac-
tivity, nonlinear system characteristics [2], as well as the influence of
other physiological variables (e.g., CO2 and O2 levels and intracranial
pressure variations [1]) on CBFV probably all contribute to the vari-
ability of ARI estimates. The proposed bootstrap method now permits
quantitative measures (e.g., standard deviation) of the estimation error
in the ARIs to be determined, for each recording. This can provide an
objective criterion for selecting signals that lead to more robust ARI es-
timates (e.g., higher variability of ABP and better model fit both were
seen to lead to reduced standard deviation), as well as providing a solid
basis for the future development of improved filter sets (including non-
linear ones).
While we have applied the proposed bootstrap solution in the anal-

ysis of autoregulatory activity, we hope that the method will prove
useful in a wider range of problems in constrained system identifica-
tion for physiological applications.
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A Computer-Aided Diagnosis for Distinguishing Tourette’s
Syndrome From Chronic Tic Disorder in Children by a
Fuzzy System With a Two-Step Minimization Approach

Tang-Kai Yin* and Nan-Tsing Chiu

Abstract—Tourette’s syndrome, no longer considered as a rare and un-
usual disease, is the most severe tic disorder in children. Early differential
diagnosis between Tourette’s syndrome and chronic tic disorder is difficult
but important because proper and early medical therapy can improve the
child’s condition. Brain single-photon emission computed tomography
(SPECT) perfusion imaging with technetium-99m hexamethylpropylene
amine oxime is a method to distinguish these two diseases. In this
paper, a fuzzy system called characteristic-point-based fuzzy inference
system (CPFIS) is proposed to help radiologists perform computer-aided
diagnosis (CAD). The CPFIS consists of SPECT-volume processing,
input-variables selection, characteristic-points (CPs) derivation, and
parameter tuning of the fuzzy system. Experimental results showed that
the major fuzzy rules from the obtained CPs match the major patterns
of Tourette’s syndrome and chronic tic disorder in perfusion imaging.
If any case that was diagnosed as chronic tic by the radiologist but as
Tourette’s syndrome by the CPFIS was taken as Tourette’s syndrome,
then the accuracy of the radiologist was increased from 87.5% (21 of 24)
without the CPFIS to 91.7% (22 of 24) with the CPFIS. All 17 cases of
Tourette’s syndrome, which is more severe than chronic tic disorder, were
correctly classified. Although the construction and application process of
the proposed method is complete, more samples should be used and tested
in order to design a universally effective CAD without small sample-size
concerns in this research.

Index Terms—AI approaches, biosignal interpretation and diagnostic
systems, fuzzy systems, signal and image processing.

I. INTRODUCTION

Tic disorders can be motor tics, vocal tics, or both. They are invol-
untary, sudden, and repetitive movements or vocalizations. It is esti-
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mated that 4%–23% of children will exhibit these symptoms [1]. The
age of onset of tics varies between 4 and 12 years with a median onset
at 7 years [2]. Tourette’s syndrome of tic disorders is much more se-
vere than simple tics and chronic motor tics. Besides chronic motor and
vocal tics, the patients of Tourette’s syndromemay have behavioral dis-
orders, sleep disturbances, headaches, and attention deficit disorders.
The outcome and treatment of Tourette’s syndrome and chronic tic

disorder are distinct. Early differential diagnosis between these two
childhood-onset diseases is difficult but important because proper and
earlymedical therapy can improve the child’s condition. It is so difficult
that many researches provide warning that some Tourette’s syndrome
cases may be misdiagnosed [3]–[5].
In this paper, a computer-aided diagnosis (CAD) is proposed to

distinguish Tourette’s syndrome from chronic tic disorder. Instead
of diagnosing behavioral disorders, inspection on brain imaging is
taken. Technetium-99m hexamethylpropylene amine oxime (HMPAO)
single-photon emission computed tomography (SPECT) brain
imaging has been applied to the diagnosis and treatment of Tourette’s
syndrome and has become a useful tool in aiding radiologists [6], [7].
It is based on the estimation of the regional cerebral blood flows by
using technetium-99m labeled to the lipophylic agent, HMPAO [8].
Hypoperfused brain areas can be related to Tourette’s syndrome [9],
[10]. Visual interpretation or semi-quantitative analysis is conducted
by experts to perform perfusion analysis. The aim of the proposed
CAD is to act as a second-opinion reader that can assist radiologists in
differentiating Tourette’s syndrome and chronic tic disorder.
Neural networks, fuzzy systems, and the combination of both have

been successfully applied to CAD such as microcalcification detection
[11], [12] and lung nodule detection [13]. In this paper, a character-
istic-point-based fuzzy inference system (CPFIS) is used to implement
the CAD. The CPFIS has been successfully applied to locating abnor-
malities in bone scintigraphy [14]. A new andmore systematic method,
gradient-projection method, is proposed to obtain characteristic points
(CPs) in this research. It is based on the minimization of approxima-
tion errors by adjusting the weights of fuzzy rules. After the training
of the proposed system, the obtained CPs can provide major patterns
embedded in training data. This pattern information is helpful in under-
standing specific perfusion differences between Tourette’s syndrome
and chronic tic disorder. Then this new knowledge can be accumulated
into or compared with that of human experts.
In the construction of the proposed fuzzy system, there are three

major procedures: SPECT-volume processing, input-variables selec-
tion, and fuzzy-system construction. In the SPECT-volume processing,
the five data slices around the corpus callosum are selected according to
the suggestions of a radiologist (Nan-Tsing Chiu,MD). On the five data
slices, 21 left–right regions are obtained and the asymmetry values on
these 21 regions are derived for each SPECT volume. After all SPECT
volumes are processed, we have a set of 21-input–1-output data. Then
these data are further processed by the nearest-point algorithm to be
a smaller data set as m-input–1-output training data, m � 21, which
is more suitable for two-class diagnosis. Finally, the training data are
processed by a two-step minimization approach: gradient-projection
method and back-propagation fine-tuning. The former will decide the
number of fuzzy rules, while the latter will fine tune the parameters of
these fuzzy rules.
The remainder of this paper is organized as follows. Section II de-

scribes the processing of SPECT volumes. The five chosen data slices
around the found corpus callosum and 21 asymmetry values on the 21
left–right regions are presented. In Section III, the nearest-point algo-
rithm is employed to choose effective variables among the 21 variables
of asymmetry and form m-input–1-output training data, m � 21. In
Section IV, the construction of the fuzzy system is performed in two
steps: gradient-projection method and back-propagation fine-tuning.

Fig. 1. SPECT sample in the – – coordinates. (a) Coronal view or –
plane. (b) Sagittal view or – plane. (c) Transverse view or – plane.

Experiment results are discussed in Section V. Finally, Section VI con-
cludes this paper.

II. SPECT-VOLUME PROCESSING

The brain SPECT volumes in this study are three-dimensional (3-D)
volumes of 128� 128�d size, where d is the depth of the volume, and
each horizontal slice is a square of 128� 128 pixels. Each pixel is a
16-b value, representing the grey level of brain perfusion at this pixel.
A right-handed coordinate system is used in that the x axis increases
from left to right, the y axis increases from posterior to anterior, and
the z axis increases from inferior to superior. This coordinate system is
consistent with the Talairach atlas [15]. The depth d varies from volume
to volume; its value is between 48–67 in our experiment. Fig. 1 shows
a sample of brain SPECT imaging with coronal, sagittal, and trans-
verse views. Fig. 1(a) is a coronal view in the x–z plane, Fig. 1(b) is a
sagittal view in the y–z plane, and Fig. 1(c) is a transverse view in the
x–y plane. The intersection of the lines in this sample is the anterior
commissure of brain, indicating that the three views are three different
viewing planes intersected on this site of brain.
The aim of SPECT-volume processing is to extract useful informa-

tion from the raw data of the brain SPECT volumes and then provide
input–output data pairs to the following fuzzy system. Expert knowl-
edge is exploited to direct the processing. The corpus callosum, situ-
ated at the center of the brain, has low perfusion. It is suggested by
the radiologist that the transverse views and coronal views around the
corpus callosum are analyzed. Then, asymmetry values of a number
of regions on these views can be calculated. These asymmetry values
can be helpful in distinguishing Tourette’s syndrome from chronic tic
disorder in children, since Tourette’s syndrome is more asymmetric be-
tween left and right brains than chronic tic disorder from experts’ ex-
periences. Based on this expertise, the input–output data pairs can be
obtained through two volume-processing operations: selecting the five
data slices around the corpus callosum and obtaining 21 asymmetry
values on these five data slices.

A. Selection of Five Data Slices

The top, front, and back slices of the corpus callosum can be auto-
matically found by an auxiliary computer algorithm or manually set
by radiologists. The former is used in the experiments of this paper.
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Fig. 2. Five white lines are the five chosen slices around the found corpus callosum of the SPECT sample in sagittal view. (a) Low slice. (b) Middle slice.
(c) Upper slice. (d) Frontal slice. (e) Temporal slice.

Since it is auxiliary, due to space constraints, the details of the algo-
rithm are not listed here. In our experiments, the selected slices about
the corpus callosum in all volumes were verified by the radiologist. No
unacceptable discrepancies in these selected slices between the auxil-
iary algorithm and the radiologist were found.
After the corpus callosum of brain is found, we can obtain five data

slices around the corpus callosum according to the suggestion of the
radiologist. Denote dlow; dmiddle; and dupper as the numbering of three
chosen transverse slices, and hfrontal and htemporal as the numbering
of two chosen coronal slices. The selection operation is

dupper = min(top of the corpus callosum; d=2 + 5)

dmiddle = dupper � 5

dlow = dupper � 10

if (front of the corpus callosum) > (back of the corpus callosum)+15,
then

hfrontal

= min(front of the corpus callosum; 128=2 + 15)

and

htemporal

= ((back of the corpus callosum) + hfrontal)=2

otherwise

hfrontal = (back of the corpus callosum) + 15

and

htemporal = (back of the corpus callosum) + 7:

In Fig. 2, the five white lines are the five selected slices in the sagittal
view. The dlow, dmiddle, and dupper slices are approximately on the
bottom, the middle, and the top, respectively, of the corpus callosum.
Similarly, the hfrontal and htemporal slices are approximately on the
front and the center, respectively, of the corpus callosum. Fig. 3 shows
these five selected slices in the transverse view for the dlow; dmiddle,
and dupper slices and in the coronal view for the hfrontal and htemporal

slices.

Fig. 3. The 21 left–right regions on the five data slices of the SPECT sample.
(a) Low slice. (b) Middle slice. (c) Upper slice. (d) Frontal slice. (e) Temporal
slice.

B. Calculation of 21 Asymmetry Volume Data

On the five chosen slices, 21 left–right regions are selected according
to the suggestions of the radiologist. The white lines in Fig. 3 show the
partitioning of these regions. For the dlow; dmiddle, and dupper slices,
each region is a 30� sector bounded by the outer contour and the half-ra-
dius-proportional contour inside brain. Thus, the three transverse slices
have 18 left–right regions labeled as in Fig. 3(a), (b), and (c). For the
hfrontal and htemporal slices, each region is a 60� sector in a quadrant
from 15� to 75�, also bounded by the outer contour and the half-ra-
dius-proportional contour inside brain. The three left–right regions of
these two slices are indicated and labeled in Fig. 3(d) and (e).
The average perfusion value of each left and each right region is

calculated. Then, the asymmetry data are given as shown in (1), at the
bottom of the page, where i is the numbering of the sample volume.

III. INPUT-VARIABLES SELECTION

After the volume processing, 21 asymmetry values in (1) are de-
rived for each SPECT volume. Considering the classification of the two

x
(t)
i

=
(average of left t region)� (average of right t region)

(average of left t region) + (average of right t region)
; t = 1; . . . ; 21 (1)
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classes of Tourette’s syndrome and chronic tic disorder, some of these
21 asymmetry variables may not be useful. Principal component anal-
ysis (PCA) [16] can be used to obtain feature vectors for a number of
the 21-variable data here. However, the feature vectors are many linear
combinations of the 21 variables. For human interpretation, it is more
desirable to represent the diagnosis operation in terms of individual
variables than feature vectors. Thus, PCA is not employed here.
The following algorithm is a heuristic method based on the nearest-

neighbor rule in pattern classification [17] to select input variables.
If two samples are of the same class, then they are usually closer to
each other than two samples of two different classes. In this study,
the “closer” here is in terms of Euclidean space. By this considera-
tion, we can check each combination of the 21 asymmetry variables
on the two classes of SPECT volumes and obtain a nearness score
near(Ssub); Ssub being a subset of f1; 2; . . . ; 21g, by the following
algorithm.

Nearest-Point Algorithm: Let Ssub � S = f1; 2; . . . ; 21g be a
subset. Denote the input data of the n1 volumes of the first class as
xxx1; . . . ; xxxnnn 2 <21, and those of the n2 volumes of the second class
as xxxnnn +1; . . . ; xxxnnn +nnn 2<21. Let near(Ssub)=0.

Step 1) Construct the reduced input data as xxx01; . . . ; xxx
0
nnn +nnn 2

<m0, where m0 is the size of Ssub = fa1; . . . ; a
0
mg, and

xxx0iii = (x
(a )
i ; . . . ; x

(a )

i ) is a reduced vector of xxxiii =

(x
(1)
i ; x

(2)
i ; . . . ; x

(21)
i ).

Step 2) For each xxx0iii, calculate the squares of the distances

(xxx0iii � xxx
0
jjj)
T � (xxx0iii � xxx

0
jjj); j = 1; . . . ; n1 + n2; j 6= i:

Suppose the minimum of the above calculation is for xxx0kkk .
If xxx0iii and xxx0kkk belong to different classes, then increase
near(Ssub) by 1.

Using this algorithm, the nearness score of any combination of vari-
ables can be calculated. However, the combination number is 221 � 1,
which is a huge number. In reality, we compute the nearness scores for
the cases of one to five variables in our experiment. It is found that
few variables can achieve low nearness scores. Then, the combination
with the minimum of these scores is used as the input data of the fol-
lowing fuzzy system. One advantage of using only few variables, e.g.,
less than five, is the interpretation of the resulted smaller-sized fuzzy
system. The variables selected through the above algorithm indicate
that some regions of the brain show different patterns for Tourette’s
syndrome and chronic tic disorder. This information can be helpful in
distinguishing between these two diseases.

IV. A FUZZY SYSTEM WITH A TWO-STEP
MINIMIZATION APPROACH

A. Characteristic-Point-Based Fuzzy Inference System

Let s be the number of fuzzy rules and m be the dimension of the
input x. In this section, we denote the following:
m

(k)
in;j centers of the membership functions of the input fuzzy sets,

1 � j � s; 1 � k � m;
�
(k)
in;j spreads of the membership functions of the input fuzzy sets,

1 � j � s; 1 � k � m;
mj centers of the membership functions of the output fuzzy sets,

1 � j � s;
�j spreads of the membership functions of the output fuzzy sets,

1 � j � s.
The rule base of a CPFIS is

If x(1) is A
(1)
1 and � � � and x(m) is A

(m)
1 ; then y is B1

...

If x(1) is A(1)
s and � � � and x(m) is A(m)

s ; then y is Bs

where A(k)
j and Bj ; 1 � j � s; 1 � k � m, are fuzzy sets in the an-

tecedent and consequent parts of fuzzy rules. The membership function
of A(k)

j is a bell-shaped function with center m(k)
in;j and spread �

(k)
in;j ,

given as follows:

�
A

x
(k) = exp �

x(k) �m
(k)
in;j

2

2 �
(k)
in;j

2 : (2)

We call (m(1)
in;j ; . . . ;m

(m)
in;j ); 1 � j � s, CPs. The membership func-

tion of Bj is also chosen as a bell-shaped function with centermj and
spread �j

�B (y) = exp �
(y �mj)

2

2�2j
: (3)

There are three steps in making an inference of a CPFIS.

Step 1) Calculate the firing strength wj ; 1 � j � s, for each fuzzy
rule

wj(x) = �
A

x
(1) � � � � � �

A
x
(m)

: (4)

Step 2) Form the output fuzzy sets

wj�B (y); 1 � j � s:

Step 3) Defuzzify the output fuzzy sets by using the simulated
center-of-area method of Lin and Lee [18]

y =

s

j=1 wjmj�j
s

j=1 wj�j
: (5)

The training of CPFIS is to decide the number of fuzzy rules and the
parameters of these rules. The following two minimization steps are
proposed to perform the training of CPFIS.
The first minimization is based on �j . The number of fuzzy rules

will be reduced from n, the number of training data, to s; s � n. Then
the second minimization is based on �(k)in;j . This step is a fine-tuning
of parameters in fuzzy sets but not a determination of the number of
fuzzy sets. The aim of this fine-tuning is to enhance the precision per-
formance of CPFIS. In Section IV-B, we provide the details of the pro-
posed systematic training process of CPFIS.

B. Gradient-Projection Method

Initially, all training data are mapped to fuzzy rules. The mapping
is performed on all data points (xi; yi);xi 2 <m; yi 2 <, with
x
(1)
i ; . . . ; x

(m)
i assigned to be the centers of the membership functions

of the input fuzzy sets and yi assigned to be the centers of the
membership functions of the output fuzzy sets. That is

m
(t)
in;i = x

(t)
i ; t = 1; . . . ;m; i = 1; . . . ; n;

mi = yi; i = 1; . . . ; n:

Each data point is mapped to a fuzzy rule. Thus, if there are n data
points, then initially there are n fuzzy rules. After the mapping, the
spreads of the membership functions of the input fuzzy sets �(k)in;j and
the spreads of the membership functions of the output fuzzy sets �j
remain to be set. We set

�
(t)
in;j =

1

a
max
1�i�n

x
(t)
i � min

1�i�n
x
(t)
i ; t = 1; . . . ; m (6)

where a is a chosen constant. In this paper, a is set to be 2. �(k)in;j are
the same for all fuzzy rules in this step. They will be different and later
fine-tuned in the back-propagation process. The firing strength of a rule
j is

A(x; xj)

= exp �
x(1) � x

(1)
j

2

2 �
(1)
in;j

2 � � � � �
x(m) � x

(m)
j

2

2 �
(m)
in;j

2
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TABLE I
MINIMUM SCORES OF THE NEAREST-POINT ALGORITHM APPLIED TO THE 24 SAMPLES

and the fuzzy inference output is

y =

n

j=1 yj�jA(x;xj)
n

p=1 �pA(x;xp)
:

The weights �j ; j = 1; . . . ; n, are initially set to be 1=n before the
minimization.
After these settings, we can take the training of CPFIS as a con-

strained minimization problem as follows:

min
� ;...;�

n

i=1

yi �

n

j=1 yj�jA(xi;xj)
n

p=1 �pA(xi; xp)

2

subject to

n

j=1

�j = 1; �j � 0; j = 1; . . . ; n: (7)

A gradient projection method is employed to solve this problem [19].
It is noted that (7) is a general nonlinear equation in the variables
�1; . . . ; �n. Thus, the solution obtained by the gradient-projection
method is usually a local minimum.
After the algorithm, many constraints �j � 0 become active con-

straints, i.e., �j � 0. The approximation “�” used here is to take into
account the precision of numerical calculations. In the experiments,
we label a constraint as an active constraint if �j is less than a small
positive number. The training data of these active constraints can be
removed from being candidates of CPs, since the weights �j � 0 of
these fuzzy rules are much smaller than those of inactive constraints. It
is from the approximation
n

i=1

yi �

n

j=1 yj�jA(xi; xj)
n

p=1 �pA(xi;xp)

2

�

n

i=1

yi �

s

j=1 yr(j)�r(j)A(xi; xr(j))
s

p=1 �r(p)A(xi; xr(p))

2

where r( � ) is a function that indicates that r(j) is the numbering of
the jth fuzzy rules in the original n fuzzy rules. Thus, the indexes of
active constraints are not in the output domain of r( � ).

C. Back-Propagation Tuning

After the first minimization, there remain s; s � n, fuzzy rules. The
second minimization is based on ���in;rrr(1); . . . ; ���in;rrr(sss) as follows:

min
��� ;...;���

n

i=1

yi �

s

j=1 mr(j)�r(j)A(xi; xr(j))
s

p=1 �r(p)A(xi; xr(p))

2

+regBP �

s

j=1

m

k=1

1

2 �
(k)
in;r(j)

2 (8)

where ���in;rrr(jjj) = (�
(1)
in;r(j); . . . ; �

(m)
in;r(j)), and regBP > 0 is a term

acting like a regularization parameter. Readers are referred to [16] for
the details of the back-propagation process. It is noted that the cen-
ters of the membership functions of the input fuzzy sets min;r(j) are
not variables in the minimization. We assign m(k)

in;r(j) = x
(k)
r(j); k =

1; . . . ;m; j = 1; . . . ; s. These xr(j) positions are the obtained CPs
from the gradient-projection method.

V. EXPERIMENT AND RESULTS

To test the performance of the proposed method, experiments were
conducted on 17 SPECT volumes of Tourette’s syndrome and 7 SPECT
volumes of chronic tic disorder from National Cheng Kung Univer-
sity Hospital, Tainan, Taiwan, R.O.C. All 24 volumes are for pedi-
atric patients. The imaging device is a triple-headed rotating gamma
camera (Multispect3; Siemens, Hoffman Estates, USA). The experi-
ments were performed on a Pentium III PC with a 600-MHz CPU and
128 MB memory. The operating system is Windows ME. Except for
the nearest-point algorithm, Java was used to implement the proposed
method and the programming software is JBuilder 4. The 24 volumes
have been used in investigating the differences in perfusion between
Tourette’s syndrome and chronic tic disorder in [20]. Although the
number of samples is not large, it is generic to some extent.

A. SPECT-Volume Processing

All 24 volumes were first processed by the volume processing as
described in Section II. The five data slices around the corpus callosum
were obtained, and the 21 input data were calculated for each volume.

B. Input-Variables Selection

The nearest-point algorithm of Section III was then applied to the
obtained 21-input–1-output data. Table I lists the minimum scores of
the algorithm for the combinations of one to five variables. The case
of three variables has the minimum score of 3 and a smaller number
of variables than other cases; therefore, we took the three variables for
Regions 8, 12, and 20 of the minimum-score case as the input variables
of the fuzzy system. We used MATLAB version 6.1 of the PC version
to run the algorithm. The total of the cases is C21

1 + C21
2 + C21

3 +
C21
4 +C21

5 = 27 895, where Cn
m denotes the number of combinations

in selectingm elements from n elements. The running time was 1121.3
s on the same experiment PC.

C. Construction of CPFIS

After the nearest-point algorithm, we had the training data of 24
cases of three input variables and one output variable. The output was
set to 1 for Tourette’s syndrome and �1 for chronic tic disorder. The
gradient-projection method was applied to these 24 training data to ob-
tain CPs. Initially, the spreads of the output fuzzy membership function
�j was set to be 1=n = 1=24. The parameter a in (6) was set to be 2.
The threshold of �j was set to be 10�8. If any �j was less than this
threshold, then �j � 0. Thus, from (7), �j � 0 became an active
constraint. The corresponding training data for this active constraint,
�j � 0, were removed from the candidate CPs. Initially, all 24 training
data were all candidates, but after 200 epochs of the gradient-projec-
tion algorithm, there only 7 candidates remained. The running time of
the gradient-projection method was 12.85 s for the Java program on the
experiment PC.
The back-propagation tuning was then used to minimize (8) based

on �(k)
in;r(j). The parameter regBP in (8) was set to 10

�6. The learning
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TABLE II
PARAMETERS OF THE FUZZY RULES IN THE TRAINED FUZZY SYSTEM

rate � and momentum constant � were set to 0.2 and 0.95, respectively.
The back-propagation learning was performed with 10 000 epochs. It
took 6.65 s for the Java program on the experiment PC.
After the construction of CPFIS, we obtained 7 fuzzy rules for all

24 volumes. Table II lists the trained parameters of the seven fuzzy
rules. The training error is 24

j=1
(y(xj) � yj)

2 = 0:2613, where
y(xj) and yj denote the outputs of CPFIS and the actual outputs from
training data, respectively. The minimum case of Tourette’s syndrome
is min1�j�17 y(xj) = 0:759, and the maximum case of chronic
tic disorder is max18�j�24 y(xj) = �0:708. In the experiment,
if y(xj) � 0, the sample was diagnosed as Tourette’s syndrome;
contrarily, if y(xj) < 0, the sample was diagnosed as chronic tic
disorder. Thus, the two classes were correctly recognized by the
trained CPFIS.
Fig. 4 shows the membership functions of the input and output

fuzzy sets of these seven rules. In the figure, the first five rules are for
Tourette’s syndrome, while the last two are for chronic tic disorder.
These fuzzy rules can be roughly described as follows.

Rule 1) If x (region 8) is negative, x (region 12) is negative, and
x (region 20) is zero, then it is Tourette’s syndrome.

Rule 2) If x (region 8) is positive, x (region 12) is negative, and
x (region 20) is negative, then it is Tourette’s syndrome.

Rule 3) If x (region 8) is zero, x (region 12) is negative, and x
(region 20) is negative, then it is Tourette’s syndrome.

Rule 4) If x (region 8) is negative, x (region 12) is negative, and
x (region 20) is zero, then it is Tourette’s syndrome.

Rule 5) If x (region 8) is negative, x (region 12) is positive, and
x (region 20) is positive, then it is Tourette’s syndrome.

Rule 6) If x (region 8) is zero, x (region 12) is negative, and x
(region 20) is positive, then it is chronic tic disorder.

Rule 7) If x (region 8) is zero, x (region 12) is zero, and x (region
20) is zero, then it is chronic tic disorder.

The x variable here denotes the asymmetry value of each left–right
region as in (1). It is noted that the terms “zero,” “positive,” and “nega-
tive” are only fuzzy sets for each rule to describe the positions of them
in each rule. They are not the same across these fuzzy rules. A fuzzy
set is labeled as “zero,” “positive,” or “negative” if the center of it is
between �0.02 and 0.02, greater than or equal to 0.02, or less than
or equal to �0.02, respectively. The linguistic description accompa-
nied with the graphical representation of these seven rules is a useful
medium to summarize the underlying mechanism of the CAD.
Clinically, it is observed in many patients that the cerebral cortical

perfusion of the left brain is lower than that of the right brain for
Tourette’s syndrome. On the contrary, the cerebral cortical perfusion
is more symmetric between the left and right brains for chronic tic

disorder. Rule 1 of Fig. 4 matches the above observation that, if
x (Region 8) and x (Region 12) are negative, then it is Tourette’s
syndrome. On the other hand, Rule 7 of Fig. 4 matches the symmetry
of chronic tic disorder that, if x (Region 8), x (Region 12), and x

(Region 20) are zero, then it is chronic tic disorder.
If the most firing rules for these 24 volumes are listed, Rule 1 is

the most firing rule for eight volumes of Tourette’s syndrome, while
Rule 7 is the most firing rule for four volumes of chronic tic disorder.
Therefore, they are the most important rules for diagnosing the two
diseases. The other five rules have fewer cases and may be related to
minor clinical observations different from the above major property of
Tourette’s syndrome and chronic tic disorder.
If only two rules, Rules 1 and 7, were used in the CPFIS, two volumes

of Tourette’s syndrome and two volumes of chronic tic disorder were
misclassified. The accuracy was 83.3% (20 of 24). Hence, Rules 1 and
7 are the two main and effective rules in the operation of the CPFIS.

D. Leave-One-Out Test

To test the proposed system on the cases not used in the training set,
leave-one-out tests were performed. That is, one volume is excluded
during the training on all the other volumes and then diagnosed by
the trained fuzzy system. The leave-one-out tests were repeated eleven
times for a in (6) to be 2:0; 2:1; . . . ; 3:0, and the accuracies were 79%,
79%, 71%, 67%, 71%, 67%, 67%, 71%, 75%, 75%, and 71%, respec-
tively. The mean and standard deviation of the accuracies were 72.0%
and 4.6%, respectively. Hence, a was set to be 2 for its 79% accuracy
performance in this paper.
To decide the threshold between Tourette’s syndrome and chronic

tic disorder, the receiver operating characteristic (ROC) curve [21] was
evaluated by using the ROCKIT provided by C. Metz at the University
of Chicago. Fig. 5 shows the ROC curve for the leave-one-out test of
the (8, 12, 20)-variables case. The area under the ROC curve, Az , is
0.8158. The threshold of 0.0 approximately at the center of the ROC
curvewas chosen in the rest of this paper. TheAz value is not more than
0.9. Thus, a combination of the CPFIS and the radiologist is provided
in the follows.
Table III shows the performance of the leave-one-out test when a =

2 and the diagnosis result by the radiologist (Nan-Tsing Chiu, MD).
Region 8 is posterior parietal in transverse slices, region 12 is anterior
frontal in transverse slices, and region 20 is orbitofrontal in coronal
slices. These regions are on single slices, but left frontal (LF) and others
in the second column of Table III are specific brain areas which are at
many slices.
Of these 24 cases, the radiologist correctly classified the seven

volumes of chronic tic disorder, but did not recognize 3 volumes
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Fig. 4. Seven fuzzy rules of the proposed system. The first five rules are for Tourette’s syndrome, while the last two are for chronic tic disorder. The three input
variables are from regions 8, 12, and 20 of the data slices.

Fig. 5. Diagram of the ROC curve for the leave-one-out test of the (8, 12,
20)-variables case. The value for the ROC curve is 0.8158.

of Tourette’s syndrome by visual interpretation of cerebral cortical
perfusion. The radiologist and the CPFIS had different results in eight
cases. In particular, cases 5, 7, and 12, which were misclassified by the
radiologist, were correctly diagnosed by the CPFIS. Thus, the CPFIS
can provide a useful second-reader opinion to the radiologist. For
example, if one case was diagnosed as chronic tic by the radiologist
but as Tourette’s syndrome by the CPFIS, then this case could be
taken as Tourette’s syndrome. By so doing, all 17 cases of Tourette’s

syndrome were correctly diagnosed with two chronic tic cases
being misdiagnosed. The accuracy of the radiologist increased from
87.5% (21 of 24) without the CPFIS to 91.7% (22 of 24) with the
CPFIS. If Tourette’s syndrome is labeled as positive and chronic tic
disorder is labeled as negative in the two-class diagnosis, sensitivity
and specificity can be calculated. The sensitivity of the radiologist
increased from 82.4% (14 of 17) without the CPFIS to 100% (17
of 17) with the CPFIS, but the specificity decreased from 100% (7
of 7) without the CPFIS to 71.4% (5 of 7) with the CPFIS. Since
Tourette’s syndrome is more severe than chronic tic, early detection
and treatment for the patients of Tourette’s syndrome is important.
The CPFIS can complement the radiologist and help find the cases of
Tourette’s syndrome without too many misdiagnosed cases of chronic
tic disorder.
Using McNemar’s test for significant changes [22], the changes

of the accuracy performances for the radiologist before and after
the above combination with the CPFIS is not statistically significant
(�2 = 0:05; df = 1; P > 0:05). However, the correlation coefficient
between the radiologist’s diagnosis and the CPFIS is only 0.2988. In
the experiment of the 24 samples, the CPFIS can provide different but
effective information to the radiologist. The CPFIS based on regions
8, 12, and 20 and the simple linguistic terms positive, negative, and
zero employed in its operation provide another set of information
to the radiologist. It is noted that Tourette’s syndrome has a 2:1
prevalence relation with respect to tic cases. Thus, the aforementioned
combination is biased toward Tourette’s syndrome. Without more
clinical examinations, the radiologist accepted the suggestion from
the combined diagnosis in this research. Although the construction
and application process of the proposed method is complete in this
research, the small sample size of 24 does not allow the results to
be directly applied to general Tourette’s syndrome and chronic tic
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TABLE III
COMPARISON OF THE RESULTS OF THE RADIOLOGIST AND THE CPFIS IN THE 24 CASES

disorder. To apply to general cases, more samples should be used
and tested in order to design a universally effective CAD without
small-sample-size concerns.

E. Comparison With PCA

PCA is a standard dimensionality reduction technique for signal
representation [23]. For comparisons with the nearest-point algorithm,
PCA was also tried to obtain effective input variables. The MATLAB
command, princomp, was used to perform PCA on the original
24� 21 data. Then, the 21 new variables obtained for the 24 SPECT
volumes were used in the construction of CPFIS. The relationship
between the original variables and the new variables is

x
T

i �m
T

� PC = xTi;new; i = 1; 2; . . . ; 24

where xi is the original 21� 1 data vector, m is the mean vector of
xi; PC is a 21� 21 matrix of 21 principal components, and xi;new
is the new 21� 1 data vector. For example, if only the first principal
component is used, then

x
(1)
i;new = x

T

i � [0:0122;�0:0064; . . . ;�0:0207]

� [�0:4755;�0:181 97; . . . ; 0:38955]T :

The explained variances for the first ten new variables were 25.5%,
18.6%, 10.4%, 9%, 7.5%, 5.8%, 4.6%, 4.5%, 2.9%, and 2.9%, respec-
tively. Since in the nearest-point algorithm the numbers of variables
were from one to five, the first five new variables from PCA were used
for comparison. Table IV shows the performances of different selec-
tions of variables after the leave-one-out tests. The first eight rows are
theminimum-score cases from the nearest-point algorithm as in Table I,
the next five rows are the cases of the five largest explained-variance
variables from PCA, and the last row is the application of the nearest-
neighbor rule. Except for the last one, each case was run seven times
at a = 2:0; 2:5; 3:0; 3:5; 4:0; 4:5, and 5:0, respectively. The best accu-
racy performance among these seven tries for each case is recorded in
Table IV.
In the table, the three cases (8, 12, 20), (4, 6, 8, 20), and (2, 3, 5,

14, 19) from the nearest-point algorithm have better or equal perfor-
mances than the five PCA cases. If corrcoef of MATLAB was used
to calculate the correlation coefficient between the second and fourth
columns in the table, the value is�0:8459. Therefore, the nearest score
has somewhat indirect relationship to accuracy. This indicates that ap-
proximately if the nearest score is lower, the accuracy is better [22].
In the 24 samples of this research, PCA does not provide better perfor-
mance than the proposed nearest-point algorithm. In fact, examples are
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TABLE IV
PERFORMANCE COMPARISON WITH PCA FOR THE 24 SAMPLES

provided in [23] to point out that PCA is good for signal representation,
but not necessarily good for pattern recognition.
If the nearest-neighbor rule [17] with Euclidean distance was used

to classify the 24 samples in the leave-one-out test, the accuracy was
33.3%, as shown in the last row of Table IV. This demonstrates that the
employed Euclidean distance does not apply to the nearest-neighbor
rule. Although the covariance matrix of the samples can be used to rep-
resent better distances for the nearest-neighbor rule, the number of 23
samples in the leave-one-out test are not enough to construct effective
covariance matrices [23].
In the table, the variables (4, 6, 8, 20) and (2, 3, 5, 14, 19) are to-

tally different but with the same nearest score, 3. This can be partly
accounted for by the correlation coefficients between these variables
which are shown at the bottom of the page. The five pairs 4-2, 4-3,
6-14, 8-5, and 20-19 in bold face have nonzero correlation. Therefore,
in view of the nearest-point algorithm, the employments of (4, 6, 8, 20)
and (2, 3, 5, 14, 19) have similar effects.
The case of variables (9, 14) in the fifth row of the table exhibits a

better accuracy performance than that of variables (8, 12, 20). How-
ever, if it is combined with the radiologist as described in the last sub-
section, the accuracy is 87.5%, which is not better than the accuracy
performance of the radiologist without the CPFIS. Therefore, the vari-
ables (8, 12, 20) were used to construct the CPFIS of this research.

VI. CONCLUSION

In this paper, a fuzzy system, CPFIS, is proposed to help radiolo-
gists perform CAD of Tourette’s syndrome and chronic tic disorder
in children. Early differential diagnosis between these two childhood-

onset diseases is difficult but important because early treatment can im-
prove the child’s condition. Two volume-processing operations were
first applied to SPECT volumes: selecting the five data slices around
the corpus callosum and calculating 21 asymmetry values for the 21
left–right regions on the five data slices for each volume. Then effec-
tive variables were chosen from these 21 variables by a nearest-point
algorithm. The original volume data were thus reduced to the training
data of fewer input variables, which were more suitable for two-class
diagnosis. Then a two-step minimization approach, consisting of a gra-
dient-projection method and a back-propagation tuning, was employed
on the training data to construct the fuzzy system. Experiment results
show that the built CPFIS has two major fuzzy rules that match the
major patterns of Tourette’s syndrome and chronic tic disorder in per-
fusion imaging. The mean and standard deviation of the accuracies in
10 leave-one-out tests of different parameters were 72.0% and 4.6%,
respectively. If one case was diagnosed as chronic tic by the radiologist
but as Tourette’s syndrome by the CPFIS, then this case could be taken
as Tourette’s syndrome. By so doing, all 17 cases of Tourette’s syn-
drome were correctly diagnosed with two chronic tic cases being mis-
diagnosed. The accuracy of the radiologist increased from 87.5% (21
of 24) without the CPFIS to 91.7% (22 of 24) with the CPFIS. Since
Tourette’s syndrome is more severe than chronic tic, early detection
and treatment for the patients of Tourette’s syndrome is important. The
CPFIS can provide an effective second-reader opinion in finding the
cases of Tourette’s syndrome. It is noted that Tourette’s syndrome has
a 2:1 prevalence relation with respect to tic cases. Thus, the employed
combined diagnosis is biased toward Tourette’s syndrome. Although
the construction and application process of the proposed method is
complete in this research, the small sample size of 24 does not allow

4-2: � 0:54; 4-3: 0:57; 4-5: � 0:08; 4-14: 0:04; 4-19: 0:09;

6-2: 0:03; 6-3: 0:11; 6-5 : �0:25; 6-14: � 0:24; 6-19: 0:09;

8-2: 0:36; 8-3: 0:00; 8-5: 0:41; 8-14: 0:31; 8-19: � 0:05;

20-2: � 0:26; 20-3: 0:04; 20-5: � 0:01; 20-14: � 0:01; 20-19 : 0:31
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the results to be directly applied to general Tourette’s syndrome and
chronic tic disorder. To apply to general cases, more samples should be
used and tested in order to design a universally effective CAD without
small-sample-size concerns.
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Correction to “Effect of Skull Resistivity on the Spatial
Resolutions of EEG and MEG”

S. Martinoia*, P. Massobrio, M. Bove, and G. Massobrio

In [1], we stated, “The NEURON and GENESIS software pack-
ages are available free of charge and have never been commercially dis-
tributed.” These programs have never been distributed commercially;
they have always been available free of charge.
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