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We propose a rigorous full-vector integral-equation formulation for analyzing modal characteristics of the com-
plex, two-dimensional, rectangular-like dielectric waveguide that is divisible into vertical slices of one-
dimensional layered structures. The entire electromagnetic mode field is completely determined by the
y-component electric and magnetic field functions on the interfaces between slices. These interfacial functions
are governed by a system of vector-coupled transverse-mode integral equations (VCTMIE) whose kernels are
made of orthonormal sets of both TE-to-y and TM-to-y modes from each slice. To solve for the unknown func-
tions, we construct sets of suitable expansion functions and turn VCTMIE into a nonlinear matrix equation via
orthogonal projection. The eigenvectors of the matrix provide the mode field solutions of the complex dielectric

waveguide. © 2006 Optical Society of America

OCIS codes: 000.3860, 000.4430, 130.0130, 230.4170, 230.7370.

1. INTRODUCTION

Integrated dielectric waveguides are one of the critical
passive optical components used in modern communica-
tion systems. To reduce costs and to shorten the product
development cycle, it is crucial to be able to compute ac-
curately the propagation constants 8 as well as the elec-
tromagnetic field profiles of these complex optical devices
so that the devices will perform as intended. Although
waveguide propagation constants can be very accurately
computed, accurate two-dimensional (2D) vector field so-
lutions are harder to compute, especially when there are
degenerate modes with similar B values. Unlike micro-
wave waveguide problems, which can be divided into un-
coupled TE and TM cases, a 2D, rectangular-pattern di-
electric waveguide (RWG) has all six EM components
simultaneously present inside the waveguide. The TE and
TM modes are coupled in the RWG making it difficult to
find the vector field solutions of various orders.

There are many published techniques for the analysis
of the general dielectric waveguide. The simplest, yet
practical ways are the effective-index method and its
variations.'™ They provide easy and fast calculation of
the waveguide propagation constants but are not de-
signed to compute the mode field distribution. More elabo-
rate techniques have been developed for finding the fields.
The long list includes the point-matching method,? mode-
matching technique,® equivalent network method,” com-
bination of volume integral equation (IE) with method of
moment constructed on top of various basis functions,® 13
method of line,'*'® and film mode matching (FMM).'6:17
For complex but compact optical devices, techniques such
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as the frequency-domain-finite-difference (FD-FD) and
finite-element (FE) methods can be quite effective. For ex-
tremely large optical structures with smoothly changing
index profiles such as adiabatic waveguides, the beam-
propagation method (BPM) and its variations are exten-
sively used for field evolutions and mode profile determi-
nation. BPM methods apply a one-way approximation to
Maxwell’s equations making it possible to advance the
field solutions plane by plane along the propagation axis.
For detailed discussions of these techniques, please refer
to an excellent review paper by Scarmozzino et al. 15
Some of the full-vector techniques are capable of pro-
viding modal analysis of RWGs such as ridged
waveguides; each has its advantages and limitations. For
example, the FD-FD and FE methods are built on trans-
verse E-field coupled partial differential equations of E,
and E, components or H-field H, and H, components. The
differential operators are approximated by finite-
difference approximations together with clever index av-
eraging to reduce the sampling resolution. Thus, they can
handle complex waveguide geometry with graded or step
index profiles. The unknowns on the FD grid points, as
well as the FE cells, satisfy a set of simultaneously linear
equations with the matrix coefficients depending on the
propagation constant. Nontrivial solutions, which are the
eigenvectors of the matrix (in the null space), are the de-
sired modal solutions; they exist only for certain propaga-
tion constants. This leads to a nonlinear eigenvalue eigen-
vector problem which, due to its massive size, cannot be
solved by the direct method and must rely on converging
iterative methods for searching propagation constants
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and mode field solutions. It is interesting that some vec-
torial BPM methods use similar techniques to analyze
complex waveguide modes. Finite-difference time-domain
(FDTD) methods use all six EM components to simulate
the time evolution of three-dimensional (3D) vector fields
that are due to initial field distribution or to given EM
sources. Based on a staggered space-time grid system, it
has the advantage in that time stepping of the EM fields
can be computed directly without solving any matrix
equation. Thus the FDTD method is often used to obtain
field solutions of single-mode waveguides.

We present here, in essence, a generalization of the
FMM method. It is based on a full-vector coupled
transverse-mode integral-equation (VCTMIE) formula-
tion to compute accurately multiple waveguide modes of
RWGs. Like FMM, it employs both TE-to-y and TM-to-y
modes and the mode-matching principle to determine
RWG modes. This paper is divided into two parts. This
part, part I, treats the background information and theo-
retical formulation of the general 2D RWG. Part I1'8 deals
with the numerical aspect such as the algorithm imple-
mentation and waveguide examples.

2. THEORY

The general RWG optical waveguide is shown in Fig. 1.
The original structure is divided into sections by a series
of vertical divisions. Each section, called a slice, is then
approximated by horizontal, parallel dielectric layers.
There are altogether (M+1) slices and M vertical inter-
faces between these slices. The formulation allows differ-
ent boundary conditions (BCs), such as Dirichlet’s BCs,
Neumann’s BCs, or Sommerfeld radiation conditions, at
both the left and right sides of this structure. To construct
orthogonal slice modes, we place two perfectly electric/
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magnetic conducting walls (PCWs) at both the upper and
lower boundaries. Although an exact integral equation
formulation can still be obtained if we remove the two ar-
tificial PCWs, it would be quite difficult to solve the equa-
tion numerically, and we will elaborate more on this in
Subsection 3.C.

Normally there are two independent electromagnetic
field solutions called TE and TM modes in a hollow micro-
wave waveguide with E, and H, as root components. All
the other electromagnetic fields can be derived from these
two components. In the cylindrical coordinate system, it is
the conventional procedure to classify the modes as E,
(TM-to-z) and H, (TE-to-z) components for the fiber optics
theory, because these are the only components satisfying
the scalar Helmholtz equation. For our RWGs made of
slices of dielectric layers, all six Cartesian components
satisfy the scalar Helmholtz equation. Within each slice,
we wish to find the simplest vector modal representation
derived from a single scalar potential. The fields E, and
H, are not the best choices since they are coupled in each
slice. Fortunately, it is known that the normal field com-
ponents D, and B, are two independent solutions within
each slice. Here we name the solutions the TE-to-y and
TM-to-y modes according to Harrington’s book. ' They are
also associated with modes generated from the
y-component electric and magnetic Hertz vectors,?’ re-
spectively. Modal formulation based on D, and B, can be
found in Refs. 21 and 22. They are the only scalar compo-
nents needed to generate all five other components in the
TM-to-y and TE-to-y modes.

The independent D, and B, are, however, coupled along
the boundary between two slices. At the interface across
two neighboring slices, the tangential vertical field com-
ponents E, and H,, are required to be continuous. Later in
the paper we show that these unknown interfacial field
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Fig. 1. General RWG divided into (M +1) regions (slices) made of layered dielectric waveguide.
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Table 1. Notation and Symbols

Symbols and Subscripts Description

b, ¥ Basis functions

D, ¥ Derivatives of basis functions
P,Q,R,S,A,T Matrices

G,P,0Q,R,S Kernals of operators
E,H,D,B,E,H EM fields

F Vector field functions

m,n Mode (region, interface) pointers
L,r Left or right indicators

B,D Normal continuous EM components
e,h Tangential EM components

x,y,2 Direction indicators

M,N Total slice interfaces, total slice modes
N, Total basis modes

functions, denoted by the calligraphic £(y) and H(y) sym-
bols, are crucial in our analysis. For any particular slice,
we can determine the unknown coefficients of the two in-
dependent layer modes generated from D, and B, using
the two adjacent pairs of £(y) and H(y). The tangential
E,(y) and H,(y) components can then be generated on the
slice boundaries. The continuity of these z-component
functions will lead to coupled integral equations for all
these &(y) and H(y) functions on all M interfaces.

We shall denote the equation for RWGs as VCTMIE,
defined above. The simplest TMIE formulation for study-
ing the scattering off a periodic grating can be found in
Chapter 7 of Ref. 20. The application of TMIE to the di-
electric waveguide termination problems can be found in
Ref. 23, in which the authors first coined the term TMIE.
For a list of all symbols and notations used in the paper
please refer to Table 1. Although it is a well-known fact
that D, and B, are the mode-generating functions for A
and e modes, the governing second-order differential
equation and the detailed derivation into Sturm-Liouville
form are hard to find in the literature. We include the
analysis in Appendix A.

By writing the y-components of D, (TM mode or
e mode) and B, (TE mode or %~ mode) as ¢p(y)
xXexp(—jkypx)exp(-jBz) and ¢p(y)exp(—jk, px)exp(-jpz),
we obtain [see Eqs. (A13a) and (A13b)] the following dif-
ferential equations for the eigenfunctions ¢g(y) and

dp(y):

Hp(y) + kaey) dp(y) = \gbp(¥), (1a)
¢ | ép(y)
<) +kooply) = DE_(y)> (1b)

where %y is the wavenumber in a vacuum and
y-dependent €,(y) is the relative dielectric constant within
each slice. The relative permeability constant u, is as-
sumed to be unity. The single prime denotes the first de-
rivative with respect to y. Here, B is the propagation con-
stant, and the parameters k,p and k,p are the
wavenumbers in the x direction. They are different, but
remain constant in all layers for a particular combination
of \, B. The eigenvalues \p and A\ and the dispersion re-
lationships are given by Egs. (A14). The cutoff wavenum-
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bers k.p and kg are related to A\p and Ag. For a particular
combination of \, 3 there are many k.p and kg for differ-
ent eigenmodes. Note that the y-direction wavenumbers,
which are denoted by &, and k,z, are different in all lay-
ers for a particular combination of \,B,\p,\g. The pro-
cess of obtaining these slice modes (or region modes) is as
follows: Given the wavelength \, we first compute a set of
eigenvalues and the associated eigenfunctions. We then
scan for the propagation constant for the desired wave-
guide mode. At each B scan, we compute k,p and &, for
the entire slice and k,p(y) and &,p(y) for all layers in the
given slice. The complete planar expansion of all the fields
can then be expressed with the three sets of wavenum-
bers k,, k,, and B.

Next, for the entire dielectric waveguide, we represent
the electric flux D,(x,y,z) as the following linear combi-
nation of the plane-wave solutions:

DV (x,y,2) = >, i), iy ) U7 (x)exp(—jBz), (2a)

Dy (x,y,2) = E Bt v ) + By v ()]

Xexp(—jBz), (2b)

DMV (x,y,z) = >, eV gD () i) (x)exp(- jBz), (2¢)

and the magnetic flux B, (x,y,z2) as

B (x,y,2) = 2 cgndn )i (X)exp(-jpz), (3a)

B(m)(x,y 2)= E (rn)(y)[ (m l) (m l)(x)+c(m ) (m ’)(x)]

Xexp(-jpz), (3b)

B (x,y,2) = >, @t @D (y) g0 (x)exp(- jBz).  (3c)

The unknown coefficients for the nth mode in the mth
slice are denoted by c(m) and c ) respectively, for D, and
B,. The letters / and r in cfgm L ), l//(’" D and c(m & 1//(’” o indi-
cate the association of the fields with the left- and right-
side interfacial functions, respectively, in the mth slice.
The upper limits of the above summations are assumed to
be infinity and will be omitted throughout the paper. The
exact definition of the x-dependent function ¢(x) in the
first and the last slice depends on the actual boundary
conditions. For example, in the first slice, for Sommerfeld
radiation conditions, it is given by

exp(k;}g Y

o (@) = ———— (4a)
LER T T

and for Dirichlet’s BC it is given by
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l//g,’r:)(x) Sln[kxF n(x xO)] . (4b)

sm(kxF RAxq)
Finally, for Neumann’s BC, it takes the form

cos[kY ,(x —x0)]

cos(k) Axq)

xF,n

U () = (4c)

In Eqgs. (4) the subscript F is used to denote either B or D.
For 2<m <M, ¢/™(x) can be defined as

sin[k{p), (x,, - %)]

b)) = ———— 5a

Vi ) sin(k;'],'i?nAxm) (5e)
Sln[kxF n(x Xm— 1)]

Y (x) = , (5b)

sm(kxF ) Ax,,)

where Ax,,=x,,—x,, 1. Note that wpmnl)(x) and ¢y (x) are
two 1ndependent functions as long as the denominator
sm(kxF nAxm) remains nonzero. These functions have a
useful property, with z//%mn’)(xm 1)=0 and z,bg”nl)(xm p=1at
x=x,,_1 and «p}”‘n’)(xm) 1 and zﬁg”nl)(xm) 0 at x=x,,. This
will be useful when deriving the VCTMIE. Once the coef-
ficient vectors for the D, and B, components are known,
all the other field quantities can be derived from Egs.
(A16). For the sake of convenience, we drop the term
exp(—jBz) and replace the z-derivative with —j. It is com-
mon to denote the TE-to-y mode as the 2~ mode and the
TM-to-y mode as the e mode. Therefore we will denote %,
(=k.p) as the cutoff wavenumber of the e mode and k.,
(=k.p) as the same for the & mode.

Next, we will consider the relation between the fields
inside a particular dielectric slice and the tangential func-
tions on the slice boundaries. The advantage of using
z//}m’“)(x), with a=1,r, and F=B,D functions becomes clear
when we evaluate E,(x,y) and H,(x,y) functions on the
slice boundaries (x=x,,) (m=1,2,...,M); only one of the
unknown coefficient vectors c}m’“) is used. Combining this
with the orthogonality conditions of the slice basis func-
tions {qﬁ(m) (y)} and {qﬁ(m) (y)}, the expansion coefficients can
be obtained directly via the following integrals:

f 1B )] dy

cmd =

>

f ¢ ) o (y)[ ¢h)] dy

f o105 dy
(ml)

, (6a)
f I Sa ()] dy
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J En@ 50 0] dy

(m ) _

’

f I () ——[ ()] dy

Wy)

f Hu @) 0)] dy
e = . (6b)

f B Pa )] dy

Further assuming that these basis functions are also nor-
malized, the denominators in Eqs. (6a) and (6b) become
unity and will be omitted from here on. Note that there is

only one term in cg’?,)l and cg’fn) in the first and the last
slice. Substituting Eqgs. (6) into Egs. (2) and (3), we can
represent D, (x,y) in terms of the interfacial field function

E(y) as

D\ (x,y) = E Ll { f Emn @G dy’ Yl (x)

f Em NPT dy’ wm)(x)} (7)

and similarly B, (x,y) in terms of H(y) as

B (x,y) = 2 o { f Hon a0 ST dy’ i (x)

f Hoy BT dy’ '"”}. 8)

Note that in the first (m=1) and the last slice (m=M+1),
only one term is needed for the previous two equations. To
make the symbols short and easy to recognize, we define
the upper case ® to represent the derivative of ¢ with re-

spect to ¥ such that
Ldigpo) o 1dls0]
Er(y) dy ’ B Mr dy

Similarly, the symbol ¥ is the derivative of ¢ with respect

to x. For example, within the slices 2<m <M, ¥§"") with
F=B,D can be shown as

Op(y) =

gcr}l')n COS[kxF n(x - x)]

s1n[k%’)nAxm] ’

(10a)

Pd(x) = w%”nl’(xn =

J(crll}')n Cos[ka(cr}}‘,)n(x - xm—l)]

Wr(x) =
" sm[k;"},)nAxm]

d (
a[wp"f,;’%x)] =

(10b)

So far we are able to express D,(x,y) and B,(x,y) in
terms of the unknown interfacial functions £(y) and H(y).
Next, we wish to derive in the same manner expressions
for the z-component EM fields that will be used to set up
the equations for the unknown functions £(y) and H(y).
We substitute Egs. (2a) and (3a) into Eq. (A16b) and get
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. (1) . (1)
-JjB &Dy ) (9By

E;l)(x, )= -
VRO R BT e

=fGiﬁ”")(x,y;y’)&(y’)dy’

+ J S @y sy Y HL(y)dy ' (11a)

where the Green’s functions to produce E,(x,y) can be
written as

(1 r)(x,y,y )= 2 [k(l) P ng,g)( )(I)(l) (y)[¢(1> N T,
(11b)
—jo )
(1 r>(x,y,y ) = 2 [k(l) ]2 (1 r)( )d’(l) (y)[d)(l) (y,)] )
n ch,n

(11c¢)

In the expression above, the asterisk ( ) denotes the com-
plex conjugate. We use the open font to represent the ker-
nels of the integral operators. The first and the second su-
perscript of the Green’s function (7 (11 denote the
destination and the source locations, respectively, while
the first and the second subscript denote target compo-
nent E(l) and source polarization £(y), respectively. G (Lr)
is the operator that maps the interfacial function H(y) on
the right side toward the electric field ES) in the first
slice. Both Green’s functions are functions of x and y.
Similarly, substituting Eqs. (2a) and (3a) into Eq. (A16d),
we obtain the z-component magnetic field intensity H;l)
X(x,y) as

. (1) . (1)
Jo dD; -jB By
kD, ox [E,}J,f W(y) oy

HV(x,y) =

= J (1 r)(x’y 7y gl(y )dy

+ f Cor e,y sy Y Ha(y")dy', (12a)

where the Green’s function of H, can be written as

(1 r)(x,y,y ) 2 [k(l) ]2 (1 r)(x)qﬁ(l) (y)[qs(l) (y,)]»’
(12b)

(x,y,y )= En: [k(}l) ]2 1:;)(36)(1)(1) (.V)[d’(l) (y,)]
(12¢)

The meanings of these Green’s function G;}e’r) and G;llh’r) fol-
low the same rules as for ‘Gg’r) and Gg’r). Combining Egs.
(11) and Egs. (12), we get the following matrix form:

Chang et al.
HDY(x,y) o Ch",ysy") Gl e,ysy")
ED(x,y) _f Y 6090y 650y
" &) 19)
Hily") |

The z-component fields approaching the first interface in-
side the first slice from the left side can be written as

HV(x, - 8,y) Ry, RNy | €67
E,(zl)(xl_(s’y) =fd R(l)(y’y) RE:}[L)(y’y,) Hl(y,) ’
(14)

where the kernels R u, v=e,h are obtained by evaluat-

uv’

ing (, 1 ") at x=x; and are given by

Rh(,y") = 2 [km P%Qw DRI ORI
(15a)
R,y =, [k(l) Y )R 05T
n chn
(15b)
Ry = E[k Upn ) @R, 5]
(15c¢)
_J' .
g}l)(y,y/)zz [k(l) ]2 (lr)( l)d’(l) (y)[ (1) (y;)]
n ch,n

(15d)

Note that in Eq. (14) we deliberately reverse the ordering
of the output vector from that of the input vector. This is
because in the normal case (scalar mode) H, is generated
by E, and E, is generated by H,. In this order, the diago-
nal operators will be the dominating terms and the off-
diagonal terms will be small or zero in the limiting scalar
cases.

We are now able to express the mth slice electric field
Eim)(x,y) in terms of the four adjacent ¢&,,_;,&,, and
Hpn-1,H,, functions via

EM™(x,y) = f GO,y 5y ) E g (v )dy" + f Gt
X (@3 Y Hm1 (v )dy" + f G

X (6,555 Emly )dy" + f G2,y 59" YHo(y)dy' s
(16a)

where the Green’s functions are
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(m z)(x,y,y) 2 [k(m) ]2 (m l)( )(I)(m)(y)[d)(m)(y;)]*’
(16b)
G e,ysy') = z [k(’”) ]2 pim l)(x)¢B )(V)[¢er2(y 7,
n ch,n

(16¢)

-iB
G wyy) =2 UB @B AN,

w [k T?
(16d)
—-jo
(m r)(JCay ') = E [k(m) ]2‘1’%’7 r) (In)(y)[d)(m)(y/)]*.
ch,n

(16e)

Similarly, we express the 2D magnetic field H;m)(x ,y) in
the mth slice as

H™(x,y) = f Gy D,y 3y Emor (v )y + f Gt
X (x,y55 YHma (v)dy' + f Gimr)

X(x,y;y’)Em(y’)dy’+f G (6,539 Y Ho vy,
(17a)

where the Green’s functions are

GimPaysy) =2, [k“") ]2 WD () S ([ S )T
(17b)
( D) '8 ml) (m) (m) RSk
(y3y) =2 o g P0IBT
n ch,n
(17¢)
J x
(m r>(x,y,y )= E [k(m)]zq}gr,l r) (m)(y)[(ﬁ(m)(y’)] ,
(17d)
(m r>(x,y,y )= E [k(m) ]2 (m r)(x (D(’")(y)[ﬂm)(y’)]*.
n ch,n

(17e)

Likewise, the z-components of electromagnetic fields at
the mth slice interfaces can be written as
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H{" (x5 + 6.) Oy Q")
B (@1 +6) =f Yo o)

X[sm_my')}
Hpn1')
f d’ Sy 0
YL 0 spew
y Eny") (18a)
Haly) ]’ :
H,E:m)(xm - 5,_)’) P;{Z)(y,y,) 0
(m) = f dy’ pim
EZ (xm—b‘,y) 0 (yay
X{em_l(y')}
M1 (')
fd RiP .y R,y
1Y R0y BP0
Enly")
18b
X[Hmcy')]’ (18b)
Here the open font P™, 0™ R™ 5™ denote sixteen

operator kernels that transform the left and right pair of
y-directed interfacial functions into the z-directed interfa-
cial functions through the 2 and e slice modes. They are
equal to the eight Green’s kernels defined in Egs.
(16b)—(16e) and Egs. (17b)—(17e) evaluated at x=x,,_; and
at x=x,,, respectively. In this case, we have

]P(m) — G(m l)|x ., Q(m)

(19)

m-17

R;zrg) = G;zng’l)lx=xma Sg;l)z Gg,ul’r)|x=xmilv (20)
where the subscript u,v stands for e and 2 mode, respec-
tively. Note that in Eqgs. (18) we have reflected the fact
that P"™ =P =0 and S"™=5/"=0 which can be easily
verified from Eqs. (19) and (20). The physical significance
is that inside a sliced waveguide the y-directed field com-
ponent does not contribute to the z-directed component on
the opposite side if it is of the same polarization. The let-
ter P is chosen for propagation and R is chosen for reflec-
tion. The letters () and S are chosen for reflection and
propagation, respectively, in the opposite direction. To as-
sist in remembering this association, just keep in mind
that () goes before R, I’ goes before S, and “left” goes before
“right.” So P is from left to right while S is from right to
left, and () is the reflection operator on the left side just as

m
E RPN =y &ER™ (P =)
NS s QS
Xm-1 Xm

Fig. 2.
matrices.

Definitions of P,Q,R,S generalized impedance
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R is the reflection operator on the right side. Figure 2 fur-
ther illustrates this relationship.

The field expressions of EiM”) and HLM“) for the last
slice can be obtained in a similar way. So far, we have de-
rived the fields within all slices in terms of the unknown
y-directed functions on the slice boundaries. Next, we will
derive the equations that these unknown functions must
satisfy. First we consider a simple structure made of two
dielectric slices with just one interface. The z-component
electromagnetic fields on either side of the interface
boundary must be the same for every point on the bound-
ary. From Eqgs. (14) and (18), we obtain

f 1| B0 B |[ &)
Y Rz(zi)(y’y,) RE}L)(y’y,) Hl(y’)

020,y 020 |[ 67
. dy, (©2) ’ (2) ’ , . (2 1)
02,y QR .y |[LH1")

We can further simplify this equation by upgrading the
four open-font symbols P,),R,S into bold face letters

[RV - Q®?] -S® 0
P®@ [R®-Q®¥] -8®

Jol o

0 0

P¥M-1

Note that the sub matrices P and -8 are equal to
each other due to the symmetry of the propagation matri-
ces. Using the notations defined in Eqgs. (23) and (24), we
have arrived at Eq. (25) with a tridiagonal matrix struc-
ture that looks like those derived for the scalar case. In
other words, the unknown vector functions are related to
their two nearby neighbors. Each boldface symbol on the
diagonal represents a full 2 X 2 operator matrix, while the
off-diagonal symbols P and S are 2 x 2 diagonal ma-
trices. We conclude that the final matrix in Eq. (25) is ac-
tually a banded matrix of a bandwidth equal to 5. In part
I1'® we will continue the discussion of the numerical
methods for solving Eq. (25) as well as discussion of vari-
ous waveguide examples computed by this VCTMIE for-
mulation.

3. DISCUSSION

A. Continuity Properties of Electromagnetic Field
Components within the Slice Waveguides

In the left and right columns of Fig. 3, we compare the
fundamental mode field profiles between A and e modes
inside a 1D dielectric slab waveguide with distinct core
and cladding indices. Since these are the basic building
blocks for the full-vector solutions of 2D ridged
waveguides, we will carefully examine the continuity
properties of these components. We note first that inside
the slab waveguide, the vertical electric field intensity
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P,Q.R,S which, in this paper, represent the matrices.
Thus Eq. (21) becomes

f dy'[RY -Q®IF, =0, (22)
where F; is the vector of the unknown functions as

F. =

12

&) )
{Hi(y’)}’ i=1,2,....M. 23)

Let A be one of the P,Q,R,S matrices organized as

A »\5:;?} o

A =
A g

For the complex RWG structure with more than two in-
terfaces, we can obtain the banded general VCTMIE as
the matrix equation

0 F,
0 : F,
- 0 © |=o0. (25)
[R(M—l) _ Q(M)] —_SM) Fyq
p™ [R™ _ QM+1] (| Fy

[
component E,(y) jumps at the core-cladding interface,
while all other components are continuous. Inside the
slab waveguide, E,(y),E,(y), being the tangential compo-
nents, are by default continuous. The normal flux compo-
nents, including the displacement current D,(y) and the
magnetic flux density B,(y), are also continuous across
the interface. However, the continuity properties of their
first- and second-order derivatives are not clear from the
figure. For example, JE,/dy is the same (except at the in-
dex boundary) as [1/€.(y)]aD,/dy, which is linearly related
to E,,E,. We conclude that the two-sided normal deriva-
tive of E, is continuous.

As for the four transverse EM components
E. E, H, H, we turn to the generating Eqs. (A16), re-
membering that all partial derivatives with respect to x
and z are the same for all layers. Thus, if a function is
continuous then also are all its higher-order derivatives
with respect to the x and z axes. The first normal deriva-
tive of the e mode’s E,,E, components and the 2 mode’s
H,,H, components are linearly related to the second-
order normal derivative of D, and B,. By Egs. (A13a) and
(A13b) they are related to nQ(y)k% X (D,/B,) and are there-
fore discontinuous. We may also apply similar arguments
to get the continuity properties of the second-order de-
rivatives of these functions since they determine the con-
cavity of the curves. In particular, we know that for a
guiding mode, the square of the transverse propagation
constant B2+k%, is between n2k2 and n2k3; this will pro-
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Fig. 3. Fundamental mode field components of TE-to-y and TM-
to-y modes for a slab waveguide. The x coordinate is in microme-
ters, while the y coordinate represents relative field intensity.
Due to symmetry, only half the figures (positive x) are shown. A
=1.5 um, n;=1.5, ny=1.0, d=1.

duce a sign change in the second derivatives of the bottom
curves of Fig. 3 when the condition is applied to Egs.
(A13) and (A14). The second derivatives of all other com-
ponents retain the same sign.

B. Fields around the Dielectric Corners

It is known that the EM field near a right-angle dielectric
corner can be quite complex and tricky.** Generally
speaking, E,,D, are continuous across dielectric inter-
faces; therefore, E, and D, become discontinuous in a
step-index medium. The unknown interfacial functions
&,(y) and H,(y) are continuous across slices. Yet the same
E,(x,y) becomes discontinuous once it is inside the inho-
mogeneous slice as it becomes a normal component. We
know that when a discontinuous function is expanded in
terms of a set continuous basis, the series representation
of the discontinuous function will overshoot (sometimes
as much as 10%) and will oscillate around the points of
discontinuity. Moreover, as we increase the upper summa-
tion limit, the overshots and the oscillation will not die
down; we see only the shrinking of the problematic re-
gion. This is the well-known Gibb’s phenomenon.z5 We
will discuss this further and give detailed numerical ex-
amples in part II.18

C. VCTMIE Formulation without Using Perfectly
Conducting Walls

In our VCTMIE formulation for 2D complex dielectric
waveguides we place a PCW on the top and bottom of the
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structure. For waveguides with certain symmetry this is
exactly what we want so that we may reduce the domain
of the problem and cut down the computational costs. For
open dielectric structures, the use of PCWs becomes an
approximation. For an unbounded multilayered wave-
guide, the modes are composed in terms of both discrete
guiding modes and continuous radiation modes.?% The six-
teen PQORS operators will be modified to include a finite
summation term for the discrete spectrum and an inte-
gral term (with the upper limit extended to infinity) for
the continuous spectrum. In doing so, we not only make
the formulation more complex than it already is but also
impose a very difficult task for numerical implementation
of the VCTMIE. Without an exact formula, an integral
must be evaluated numerically by discrete sum using,
say, the Gaussian quadrature. Any such numerical inte-
gration method is essentially a discretization process that
generates a set of nonorthogonal functions. The unknown
expansion coefficient vectors can no longer be written ex-
plicitly as in Eqgs. (6a). Thus the integral equation can not
be derived. VCTMIE formulation for the open structures
will be less useful for numerical purposes.

D. Comparison with the Film-Mode-Matching Method
Among various methods of dealing with vectorial modal
solutions of RWGs, the FMM structure resembles that of
the VCTMIE method most closely. The main difference is
that the FMM lacks the exact integral equation and the
resulting benefit from the new formulation, such as the
flexibility of choosing arbitrary expansion bases for the
unknown vertical tangential fields £, and 7#,. Unknowns
in the FMM method are the coefficient vectors of slice
modes in each slice section, whereas in VCTMIE the un-
knowns are interfacial field functions. In the FMM ex-
ample, a rectangular waveguide was analyzed by simul-
taneous mode-matching along the slice interface with the
y- and z-components of electric and magnetic fields with a
finite number of slice modes [N™ modes for each region/
polarization] from slices I and II. The advantages of FMM
are the easy comprehension of the mode-matching prin-
ciple and its superior computational efficiency in which
very accurate waveguide propagation constants can be ob-
tained with relatively few slice modes. However, many
more slice modes are needed, along with larger matrices,
to compute accurate field solutions and minimize the ar-
tificial discontinuity in the homogeneous regions of vector
fields across the slice interfaces. Under the VCTMIE for-
mulation, the unknown interfacial £,(y) and #,(y) func-
tions can be efficiently expressed in terms of some opti-
mized basis functions with fewer terms [N(bm) terms for
each interface/polarization]. We then use as many slice
modes as are needed [N(”‘)%5N(bm)] to match the chosen
basis functions. As a result, vector fields across the slice
interfaces become continuous in the homogeneous re-
gions, and the Gibb’s phenomenon at the dielectric cor-
ners is greatly reduced (see Part II,'® Fig. 7). If we choose
the interfacial basis functions to be one of the slice modes
and keep the number of terms in PORS operators all the
same, the final coupled matrix equation will be the same
as those obtained by FMM. The two methods are then
identical.
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The advantage of VCTMIE is that the size of the non-
linear matrix equation remains unchanged while the
costs of computing the additional slice modes and the fi-
nal matrix increase only linearly with respect to the total
number of slice modes used in each region (see Part 11,8
Eq. (18)). Both FMM and VCTMIE methods are depen-
dent on the capability of constructing complete 1D layer
modes of given complex dielectric slab waveguides, which
is hard to do in the case of a structure with nearly degen-
erate modes. Finally, we wish to point out that there are
other ways to solve the VCTMIE that are otherwise not
available to FMM. For example, using approximate solu-
tions to the unknown &,(y) and H,(y) functions (via some
effective-index method or some iterative solutions), all the
mode field solutions can be obtained with Egs. (6)—(8).

4. CONCLUSION

In this paper, we have constructed a rigorous VCTMIE
formulation to study modal characteristics of rectangular-
pattern dielectric waveguides as commonly found in inte-
grated optical circuits. In this vector formulation, a RWG
is first approximated by a collection of dielectric slices.
Within each slice the 4 X 4 kernel matrix constructed from
both TE-to-y and TM-to-y modes map the unknown
y-directed interfacial functions on the slice boundaries
onto the z-component electric and magnetic fields. The
continuity of these z-directed EM field components along
each slice interface provide governing integral equations
on the unknown interfacial functions £, and H,. To solve
the unknown functions, we construct sets of suitable ex-
pansion functions and turn VCTMIE into an optimized
matrix equation. We leave the verification of our formula-
tion as well as detailed numerical discussion to part I1.18

APPENDIX A: DERIVATION OF THE TE-y
AND TM-y STURM-LIOUVILLE FORM

For 1D dielectric layered media, we obtain from time-
harmonic Maxwell’s equations

1 1
_VX—

- V XB|=-jwB. (A1)
Mo JweE(y)

€.(y) is the relative permittivity and u, is assumed in all
regions, and they are dropped for simplicity. Using the
vector identity

VX (pA) =VpXA+pV XA
and
V-B=0, (A2)

Eq. (A1) can be rewritten as

1
V2B + kie.(y)B - €.(y) V ) X (VXB)=0. (A3)

€

Note that the term V[1/€.(y)] has only the y component,
and the result after the curl operation will not produce
any y component. Therefore, the resulting differential
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equation for the y component of the magnetic field in Eq.
(A3) is

Vsz + kgs,(y)By =0. (A4)
We seek the solution in the following form:
B, (x,y,2) = ¢p(y)exp(- jk.px)exp(-jBz). (A5)

Thus Eq. (A4) can be written as the following differential
equation in Sturm—Liouville (S-L) form:

[650)])' + ko) da(y) = (B> + kip) 5(). (A6)

Next, we seek to find the differential equation for the TM-
to-y case. We have

1 _ _
1oV X {— vV X E] =kie(y)E. (A7)
Mo
Applying the vector identity for the double curls, we ob-
tain
V(V-E)-V?E =kie(y)E. (A8)

Using V-(D/e)=V(1/€)-D+(1/€)V -D, along with Gauss’s
law V-D=p,=0, we can rewrite Eq. (A8) as

V2 b -V{ 6;@)D]+k§f)=0. (A9)
&) EXy)
Finally equating the y component in Eq. (A9), we get
V2 Dy + lﬂ[) ],+k2D =0. (A10)
& | Ew 7] T

Similar to Eq. (A5), we set
Dy(x7y72) = ¢D(y)exp(_.]kxDx)eXp(_J,BZ) (All)

Substituting Eq. (A11) into Eq. (A10) and after a few al-
gebraic manipulations, we get

l Bp() ép()
&) &)

Rewriting Eqs. (A6) and (A12) in the standard S-L
form, we have

1 +k3dp(y) = (B2 + k2 (A12)

Ll ¢p()]= ¢py) + k2e.(v)dp(y) = \gdp(y),  (Al3a)
dp) | ) ép(y)
Lplép)]= { <o) } + R dply) = Ve (A13b)
where
Ng=klp= B2+ ki =€(ki-k2(y),  (Alda)
Np=kly= B2+ k=€ (y)k— k().  (Aldb)

In the above equations k%, (TE) and k2, (TM) are the
eigenvalues of the 1D slab waveguide for TE-to-y and TM-
to-y modes. Equations (A13) and (A14) also give the equa-
tion for the vertical wavenumbers &,5(y) (TE) and %,p(y)
(TM). They are piecewise-constant functions determined
by the eigenvalues of the particular polarization/mode
and the optical index within a given layer. On the other
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hand, the horizontal transverse wavenumbers k,p, k.p,
such as the propagation constant B, remain constant
within the entire slab structure for a given wavelength
and mode order. From S-L theory,’ the solutions to Egs.
(A13) ¢p,(y)/ ép,(y) are orthogonal eigenfunctions that
can be normalized such that

J ¢B,m(y)¢B,n0’)dy = 5m,n’ (A15a)
(rbD,m(y)d)D,n(y) _ (A]_5b)
G(y) y - Y“m,n>

where §,, , is the Kronecker delta.

Given D,(x,y,z) and B,(x,y,z), the remaining four EM

components can be obtained from the electromagnetic
theory as follows:

1 #D, jodB,
Ex =Ty + o . > (A16a)
kcBEr(y) dxdy ch oz
1 #D, jodB,
E=g— 2, (A16D)
kcBEr(y) ‘920?)/ ch ox
-jodD, 1 &B,
x= T_+2__’ (A].GC)
kcB oz chlu“r oxdy
jodD, 1 #B,
(Al6d)

=t .
: kZB ox k?DlLrﬁzp}.y
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