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Vectorial modal analysis of dielectric waveguides
based on a coupled transverse-mode

integral equation. I. Mathematical formulation
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We propose a rigorous full-vector integral-equation formulation for analyzing modal characteristics of the com-
plex, two-dimensional, rectangular-like dielectric waveguide that is divisible into vertical slices of one-
dimensional layered structures. The entire electromagnetic mode field is completely determined by the
y-component electric and magnetic field functions on the interfaces between slices. These interfacial functions
are governed by a system of vector-coupled transverse-mode integral equations (VCTMIE) whose kernels are
made of orthonormal sets of both TE-to-y and TM-to-y modes from each slice. To solve for the unknown func-
tions, we construct sets of suitable expansion functions and turn VCTMIE into a nonlinear matrix equation via
orthogonal projection. The eigenvectors of the matrix provide the mode field solutions of the complex dielectric
waveguide. © 2006 Optical Society of America
OCIS codes: 000.3860, 000.4430, 130.0130, 230.4170, 230.7370.
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. INTRODUCTION
ntegrated dielectric waveguides are one of the critical
assive optical components used in modern communica-
ion systems. To reduce costs and to shorten the product
evelopment cycle, it is crucial to be able to compute ac-
urately the propagation constants � as well as the elec-
romagnetic field profiles of these complex optical devices
o that the devices will perform as intended. Although
aveguide propagation constants can be very accurately

omputed, accurate two-dimensional (2D) vector field so-
utions are harder to compute, especially when there are
egenerate modes with similar � values. Unlike micro-
ave waveguide problems, which can be divided into un-

oupled TE and TM cases, a 2D, rectangular-pattern di-
lectric waveguide (RWG) has all six EM components
imultaneously present inside the waveguide. The TE and
M modes are coupled in the RWG making it difficult to
nd the vector field solutions of various orders.
There are many published techniques for the analysis

f the general dielectric waveguide. The simplest, yet
ractical ways are the effective-index method and its
ariations.1–4 They provide easy and fast calculation of
he waveguide propagation constants but are not de-
igned to compute the mode field distribution. More elabo-
ate techniques have been developed for finding the fields.
he long list includes the point-matching method,5 mode-
atching technique,6 equivalent network method,7 com-

ination of volume integral equation (IE) with method of
oment constructed on top of various basis functions,8–13

ethod of line,14,15 and film mode matching (FMM).16,17

or complex but compact optical devices, techniques such
1084-7529/06/061468-10/$15.00 © 2
s the frequency-domain-finite-difference (FD-FD) and
nite-element (FE) methods can be quite effective. For ex-
remely large optical structures with smoothly changing
ndex profiles such as adiabatic waveguides, the beam-
ropagation method (BPM) and its variations are exten-
ively used for field evolutions and mode profile determi-
ation. BPM methods apply a one-way approximation to
axwell’s equations making it possible to advance the

eld solutions plane by plane along the propagation axis.
or detailed discussions of these techniques, please refer

o an excellent review paper by Scarmozzino et al.15

Some of the full-vector techniques are capable of pro-
iding modal analysis of RWGs such as ridged
aveguides; each has its advantages and limitations. For
xample, the FD-FD and FE methods are built on trans-
erse E-field coupled partial differential equations of Ex
nd Ey components or H-field Hx and Hy components. The
ifferential operators are approximated by finite-
ifference approximations together with clever index av-
raging to reduce the sampling resolution. Thus, they can
andle complex waveguide geometry with graded or step

ndex profiles. The unknowns on the FD grid points, as
ell as the FE cells, satisfy a set of simultaneously linear
quations with the matrix coefficients depending on the
ropagation constant. Nontrivial solutions, which are the
igenvectors of the matrix (in the null space), are the de-
ired modal solutions; they exist only for certain propaga-
ion constants. This leads to a nonlinear eigenvalue eigen-
ector problem which, due to its massive size, cannot be
olved by the direct method and must rely on converging
terative methods for searching propagation constants
006 Optical Society of America



a
t
c
(
t
t
s
h
c
e
fi

F
t
t
R
m
R
p
r
w
m

2
T
T
o
a
T
f
e
N
b
o

m
l
f
t
t
S

fi
w
t
t
t
(
t
t
s
s
w
d
H
s
p
e
T
a
y
s
f
n
T

t
t
p
t

Chang et al. Vol. 23, No. 6 /June 2006/J. Opt. Soc. Am. A 1469
nd mode field solutions. It is interesting that some vec-
orial BPM methods use similar techniques to analyze
omplex waveguide modes. Finite-difference time-domain
FDTD) methods use all six EM components to simulate
he time evolution of three-dimensional (3D) vector fields
hat are due to initial field distribution or to given EM
ources. Based on a staggered space–time grid system, it
as the advantage in that time stepping of the EM fields
an be computed directly without solving any matrix
quation. Thus the FDTD method is often used to obtain
eld solutions of single-mode waveguides.
We present here, in essence, a generalization of the

MM method. It is based on a full-vector coupled
ransverse-mode integral-equation (VCTMIE) formula-
ion to compute accurately multiple waveguide modes of
WGs. Like FMM, it employs both TE-to-y and TM-to-y
odes and the mode-matching principle to determine
WG modes. This paper is divided into two parts. This
art, part I, treats the background information and theo-
etical formulation of the general 2D RWG. Part II18 deals
ith the numerical aspect such as the algorithm imple-
entation and waveguide examples.

. THEORY
he general RWG optical waveguide is shown in Fig. 1.
he original structure is divided into sections by a series
f vertical divisions. Each section, called a slice, is then
pproximated by horizontal, parallel dielectric layers.
here are altogether �M+1� slices and M vertical inter-

aces between these slices. The formulation allows differ-
nt boundary conditions (BCs), such as Dirichlet’s BCs,
eumann’s BCs, or Sommerfeld radiation conditions, at
oth the left and right sides of this structure. To construct
rthogonal slice modes, we place two perfectly electric/

Fig. 1. General RWG divided into �M+1� re
agnetic conducting walls (PCWs) at both the upper and
ower boundaries. Although an exact integral equation
ormulation can still be obtained if we remove the two ar-
ificial PCWs, it would be quite difficult to solve the equa-
ion numerically, and we will elaborate more on this in
ubsection 3.C.
Normally there are two independent electromagnetic

eld solutions called TE and TM modes in a hollow micro-
ave waveguide with Ez and Hz as root components. All

he other electromagnetic fields can be derived from these
wo components. In the cylindrical coordinate system, it is
he conventional procedure to classify the modes as Ez
TM-to-z) and Hz (TE-to-z) components for the fiber optics
heory, because these are the only components satisfying
he scalar Helmholtz equation. For our RWGs made of
lices of dielectric layers, all six Cartesian components
atisfy the scalar Helmholtz equation. Within each slice,
e wish to find the simplest vector modal representation
erived from a single scalar potential. The fields Ez and
z are not the best choices since they are coupled in each

lice. Fortunately, it is known that the normal field com-
onents Dy and By are two independent solutions within
ach slice. Here we name the solutions the TE-to-y and
M-to-y modes according to Harrington’s book.19 They are
lso associated with modes generated from the
-component electric and magnetic Hertz vectors,20 re-
pectively. Modal formulation based on Dy and By can be
ound in Refs. 21 and 22. They are the only scalar compo-
ents needed to generate all five other components in the
M-to-y and TE-to-y modes.
The independent Dy and By are, however, coupled along

he boundary between two slices. At the interface across
wo neighboring slices, the tangential vertical field com-
onents Ey and Hy are required to be continuous. Later in
he paper we show that these unknown interfacial field

slices) made of layered dielectric waveguide.
gions (
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unctions, denoted by the calligraphic E�y� and H�y� sym-
ols, are crucial in our analysis. For any particular slice,
e can determine the unknown coefficients of the two in-
ependent layer modes generated from Dy and By using
he two adjacent pairs of E�y� and H�y�. The tangential
z�y� and Hz�y� components can then be generated on the

lice boundaries. The continuity of these z-component
unctions will lead to coupled integral equations for all
hese E�y� and H�y� functions on all M interfaces.

We shall denote the equation for RWGs as VCTMIE,
efined above. The simplest TMIE formulation for study-
ng the scattering off a periodic grating can be found in
hapter 7 of Ref. 20. The application of TMIE to the di-
lectric waveguide termination problems can be found in
ef. 23, in which the authors first coined the term TMIE.
or a list of all symbols and notations used in the paper
lease refer to Table 1. Although it is a well-known fact
hat Dy and By are the mode-generating functions for h
nd e modes, the governing second-order differential
quation and the detailed derivation into Sturm–Liouville
orm are hard to find in the literature. We include the
nalysis in Appendix A.
By writing the y-components of Dy (TM mode or
mode) and By (TE mode or h mode) as �D�y�

exp�−jkxDx�exp�−j�z� and �B�y�exp�−jkxBx�exp�−j�z�,
e obtain [see Eqs. (A13a) and (A13b)] the following dif-

erential equations for the eigenfunctions �B�y� and
D�y�:

�B� �y� + k0
2�r�y��B�y� = �B�B�y�, �1a�

��D� �y�

�r�y� ��
+ k0

2�D�y� = �D

�D�y�

�r�y�
, �1b�

here k0 is the wavenumber in a vacuum and
-dependent �r�y� is the relative dielectric constant within
ach slice. The relative permeability constant �r is as-
umed to be unity. The single prime denotes the first de-
ivative with respect to y. Here, � is the propagation con-
tant, and the parameters kxD and kxB are the
avenumbers in the x direction. They are different, but

emain constant in all layers for a particular combination
f � ,�. The eigenvalues �D and �B and the dispersion re-
ationships are given by Eqs. (A14). The cutoff wavenum-

Table 1. Notation and Symbols

ymbols and Subscripts Description

, � Basis functions
, 	 Derivatives of basis functions
,Q ,R ,S ,A ,T Matrices
,P ,Q ,R ,S Kernals of operators
,H ,D ,B ,E ,H EM fields

Vector field functions
,n Mode (region, interface) pointers

,r Left or right indicators
,D Normal continuous EM components

,h Tangential EM components
,y ,z Direction indicators
,N Total slice interfaces, total slice modes

b Total basis modes
ers kcD and kcB are related to �D and �B. For a particular
ombination of � ,� there are many kcD and kcB for differ-
nt eigenmodes. Note that the y-direction wavenumbers,
hich are denoted by kyD and kyB, are different in all lay-

rs for a particular combination of � ,� ,�D ,�B. The pro-
ess of obtaining these slice modes (or region modes) is as
ollows: Given the wavelength �, we first compute a set of
igenvalues and the associated eigenfunctions. We then
can for the propagation constant for the desired wave-
uide mode. At each � scan, we compute kxB and kxD for
he entire slice and kyD�y� and kyB�y� for all layers in the
iven slice. The complete planar expansion of all the fields
an then be expressed with the three sets of wavenum-
ers kx, ky, and �.
Next, for the entire dielectric waveguide, we represent

he electric flux Dy�x ,y ,z� as the following linear combi-
ation of the plane-wave solutions:

Dy
�1��x,y,z� = �

n
cD,n

�1� �D,n
�1� �y��D,n

�1,r��x�exp�− j�z�, �2a�

Dy
�m��x,y,z� = �

n
�D,n

�m� �y��cD,n
�m,l��D,n

�m,l��x� + cD,n
�m,r��D,n

�m,r��x��

�exp�− j�z�, �2b�

Dy
�M+1��x,y,z� = �

n
cD,n

�M+1��D,n
�M+1��y��D,n

�M+1,l��x�exp�− j�z�, �2c�

nd the magnetic flux By�x ,y ,z� as

By
�1��x,y,z� = �

n
cB,n

�1� �B,n
�1� �y��B,n

�1,r��x�exp�− j�z�, �3a�

By
�m��x,y,z� = �

n
�B,n

�m��y��cB,n
�m,l��B,n

�m,l��x� + cB,n
�m,r��B,n

�m,r��x��

�exp�− j�z�, �3b�

By
M+1�x,y,z� = �

n
cB,n

�M+1��B,n
�M+1��y��B,n

�M+1,l��x�exp�− j�z�. �3c�

he unknown coefficients for the nth mode in the mth
lice are denoted by cD,n

�m� and cB,n
�m�, respectively, for Dy and

y. The letters l and r in cB,n
�m,l�, �B,n

�m,l� and cB,n
�m,r�, �B,n

�m,r� indi-
ate the association of the fields with the left- and right-
ide interfacial functions, respectively, in the mth slice.
he upper limits of the above summations are assumed to
e infinity and will be omitted throughout the paper. The
xact definition of the x-dependent function ��x� in the
rst and the last slice depends on the actual boundary
onditions. For example, in the first slice, for Sommerfeld
adiation conditions, it is given by

�F,n
�1,r��x� =

exp�kxF,n
�1� x�

exp�kxF,n
�1� x1�

, �4a�

nd for Dirichlet’s BC it is given by
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�F,n
�1,r��x� =

sin�kxF,n
�1� �x − x0��

sin�kxF,n
�1� 
x1�

. �4b�

inally, for Neumann’s BC, it takes the form

�F,n
�1,r��x� =

cos�kxF,n
�1� �x − x0��

cos�kxF,n
�1� 
x1�

. �4c�

n Eqs. (4) the subscript F is used to denote either B or D.
or 2�m�M, ��m��x� can be defined as

�F,n
�m,l��x� =

sin�kxF,n
�m� �xm − x��

sin�kxF,n
�m� 
xm�

, �5a�

�F,n
�m,r��x� =

sin�kxF,n
�m� �x − xm−1��

sin�kxF,n
�m� 
xm�

, �5b�

here 
xm=xm−xm−1. Note that �F,n
�m,l��x� and �F,n

�m,r��x� are
wo independent functions as long as the denominator
in�kxF,n

�m� 
xm� remains nonzero. These functions have a
seful property, with �F,n

�m,r��xm−1�=0 and �F,n
�m,l��xm−1�=1 at

=xm−1 and �F,n
�m,r��xm�=1 and �F,n

�m,l��xm�=0 at x=xm. This
ill be useful when deriving the VCTMIE. Once the coef-
cient vectors for the Dy and By components are known,
ll the other field quantities can be derived from Eqs.
A16). For the sake of convenience, we drop the term
xp�−j�z� and replace the z-derivative with −j�. It is com-
on to denote the TE-to-y mode as the h mode and the
M-to-y mode as the e mode. Therefore we will denote kce

=kcD� as the cutoff wavenumber of the e mode and kch
=kcB� as the same for the h mode.

Next, we will consider the relation between the fields
nside a particular dielectric slice and the tangential func-
ions on the slice boundaries. The advantage of using

F
�m,a��x�, with a= l ,r, and F=B ,D functions becomes clear
hen we evaluate Ey�x ,y� and Hy�x ,y� functions on the

lice boundaries �x=xm� �m=1,2, . . . ,M�; only one of the
nknown coefficient vectors cF

�m,a� is used. Combining this
ith the orthogonality conditions of the slice basis func-

ions ��D,n
�m� �y�	 and ��B,n

�m��y�	, the expansion coefficients can
e obtained directly via the following integrals:

cD,n
�m,l� =


 Em−1�y���D,n
�m� �y��*dy


 �D,n
�m� �y�

1

�r
�m��y�

��D,n
�m� �y��*dy

,

cB,n
�m,l� =


 Hm−1�y���B,n
�m��y��*dy


 �B,n
�m��y���B,n

�m��y��*dy

, �6a�
cD,n
�m,r� =


 Em�y���D,n
�m� �y��*dy


 �D,n
�m� �y�

1

�r
�m��y�

��D,n
�m� �y��*dy

,

cB,n
�m,r� =


 Hm�y���B,n
�m��y��*dy


 �B,n
�m��y���B,n

�m��y��*dy

. �6b�

urther assuming that these basis functions are also nor-
alized, the denominators in Eqs. (6a) and (6b) become
nity and will be omitted from here on. Note that there is
nly one term in cD,n

�m� and cB,n
�m� in the first and the last

lice. Substituting Eqs. (6) into Eqs. (2) and (3), we can
epresent Dy�x ,y� in terms of the interfacial field function
�y� as

Dy
�m��x,y� = �

n
�D,n

�m� �y��
 E�m−1��y����D,n
�m� �y���*dy��D,n

�m,l��x�

+
 Em�y����D,n
�m� �y���*dy��D,n

�m,r��x�� , �7�

nd similarly By�x ,y� in terms of H�y� as

By
�m��x,y� = �

n
�B,n

�m��y��
 Hm−1�y����B,n
�m��y���*dy��D,n

�m,l��x�

+
 Hm�y����B,n
�m��y���*dy��D,n

�m,r�� . �8�

ote that in the first �m=1� and the last slice �m=M+1�,
nly one term is needed for the previous two equations. To
ake the symbols short and easy to recognize, we define

he upper case � to represent the derivative of � with re-
pect to y such that

�D�y� =
1

�r�y�

d��D�y��

dy
, �B�y� =

1

�r

d��B�y��

dy
. �9�

imilarly, the symbol 	 is the derivative of � with respect
o x. For example, within the slices 2�m�M, 	F,n

�m� with
=B ,D can be shown as

	F,n
�m,l��x� =

d

dx
��F,n

�m,l��x�� =
− kxF,n

�m� cos�kxF,n
�m� �xm − x��

sin�kxF,n
�m� 
xm�

,

�10a�

	F,n
�m,r��x� =

d

dx
��F,n

�m,r��x�� =
− kxF,n

�m� cos�kxF,n
�m� �x − xm−1��

sin�kxF,n
�m� 
xm�

.

�10b�

So far we are able to express Dy�x ,y� and By�x ,y� in
erms of the unknown interfacial functions E�y� and H�y�.
ext, we wish to derive in the same manner expressions

or the z-component EM fields that will be used to set up
he equations for the unknown functions E�y� and H�y�.
e substitute Eqs. (2a) and (3a) into Eq. (A16b) and get
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Ez
�1��x,y� =

− j�

�kce,n
�1� �2��1��y�

�Dy
�1�

�y
−

j�

�kch,n
�1� �2

�By
�1�

�x

=
 Gee
�1,r��x,y;y��E1�y��dy�

+
 Ge,h
�1,r��x,y;y��H1�y��dy�, �11a�

here the Green’s functions to produce Ez�x ,y� can be
ritten as

Gee
�1,r��x,y;y�� = �

n

− j�

�kce,n
�1� �2

�D,n
�1,r��x��D,n

�1� �y���D,n
�1� �y���*,

�11b�

Geh
�1,r��x,y;y�� = �

n

− j�

�kch,n
�1� �2

	B,n
�1,r��x��B,n

�1� �y���B,n
�1� �y���*.

�11c�

n the expression above, the asterisk � *� denotes the com-
lex conjugate. We use the open font to represent the ker-
els of the integral operators. The first and the second su-
erscript of the Green’s function Gee

�1,r� denote the
estination and the source locations, respectively, while
he first and the second subscript denote target compo-
ent Ez

�1� and source polarization E�y�, respectively. Geh
�1,r�

s the operator that maps the interfacial function H�y� on
he right side toward the electric field Ez

�1� in the first
lice. Both Green’s functions are functions of x and y.
imilarly, substituting Eqs. (2a) and (3a) into Eq. (A16d),
e obtain the z-component magnetic field intensity Hz

�1�

�x ,y� as

Hz
�1��x,y� =

j�

�kce,n
�1� �2

�Dy
�1�

�x
+

− j�

�kch,n
�1� �2��1��y�

�By
�1�

�y

=
 Ghe
�1,r��x,y;y��E1�y��dy�

+
 Ghh
�1,r��x,y;y��H1�y��dy�, �12a�

here the Green’s function of Hz can be written as

Ghe
�1,r��x,y;y�� = �

n

j�

�kce,n
�1� �2

	D,n
�1,r��x��D,n

�1� �y���D,n
�1� �y���*,

�12b�

Ghh
�1,r��x,y;y�� = �

n

− j�

�kch,n
�1� �2

�B,n
�1,r��x��B,n

�1� �y���B,n
�1� �y���*.

�12c�

he meanings of these Green’s function Ghe
�1,r� and Ghh

�1,r� fol-
ow the same rules as for Gee

�1,r� and Gee
�1,r�. Combining Eqs.

11) and Eqs. (12), we get the following matrix form:
�Hz
�1��x,y�

Ez
�1��x,y�� =
 dy��Ghe

�1,r��x,y;y�� Ghh
�1,r��x,y;y��

Gee
�1,r��x,y;y�� Geh

�1,r��x,y;y���
�� E1�y��

H1�y��� . �13�

he z-component fields approaching the first interface in-
ide the first slice from the left side can be written as

�Hz
�1��x1 − 
,y�

Ez
�1��x1 − 
,y�� =
 dy��Rhe

�1��y,y�� Rhh
�1��y,y��

Ree
�1��y,y�� Reh

�1��y,y���� E1�y��

H1�y��� ,

�14�

here the kernels Ruv
�1�, u, v=e ,h are obtained by evaluat-

ng Guv
�1,r� at x=x1 and are given by

Rhe
�1��y,y�� = �

h

j�

�kce,n
�1� �2

	D,n
�1,r��x1��D,n

�1� �y���D,n
�1� �y���*,

�15a�

Rhh
�1��y,y�� = �

n

− j�

�kch,n
�1� �2

�B,n
�1,r��x1��B,n

�1� �y���B,n
�1� �y���*,

�15b�

Ree
�1��y,y�� = �

n

− j�

�kce,n
�1� �2

�D,n
�1,r��x1��D,n

�1� �y���D,n
�1� �y���*,

�15c�

Reh
�1��y,y�� = �

n

− j�

�kch,n
�1� �2

	B,n
�1,r��x1��B,n

�1� �y���B,n
�1� �y���*.

�15d�

ote that in Eq. (14) we deliberately reverse the ordering
f the output vector from that of the input vector. This is
ecause in the normal case (scalar mode) Hz is generated
y Ey and Ez is generated by Hy. In this order, the diago-
al operators will be the dominating terms and the off-
iagonal terms will be small or zero in the limiting scalar
ases.

We are now able to express the mth slice electric field

z
�m��x ,y� in terms of the four adjacent Em−1,Em, and
m−1,Hm functions via

Ez
�m��x,y� =
 Gee

�m,l��x,y;y��Em−1�y��dy� +
 Geh
�m,l�

��x,y;y��Hm−1�y��dy� +
 Gee
�m,r�

��x,y;y��Em�y��dy� +
 Geh
�m,r��x,y;y��Hm�y��dy�

�16a�

here the Green’s functions are
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Gee
�m,l��x,y;y�� = �

n

− j�

�kce,n
�m� �2

�D,n
�m,l��x��D,n

�m� �y���D,n
�m� �y���*,

�16b�

Geh
�m,l��x,y;y�� = �

n

− j�

�kch,n
�m� �2

	B,n
�m,l��x��B,n

�m��y���B,n
�m��y���*,

�16c�

Gee
�m,r��x,y;y�� = �

n

− j�

�kce,n
�m� �2

�D,n
�m,r��x��D,n

�m� �y���D,n
�m� �y���*,

�16d�

Geh
�m,r��x,y;y�� = �

n

− j�

�kch,n
�m� �2

	B,n
�m,r��x��B,n

�m��y���B,n
�m��y���*.

�16e�

imilarly, we express the 2D magnetic field Hz
�m��x ,y� in

he mth slice as

Hz
�m��x,y� =
 Ghe

�m,l��x,y;y��Em−1�y��dy� +
 Ghh
�m,l�

��x,y;y��Hm−1�y��dy� +
 Ghe
�m,r�

��x,y;y��Em�y��dy� +
 Ghh
�m,r��x,y;y��Hm�y��dy�

�17a�

here the Green’s functions are

Ghe
�m,l��x,y;y�� = �

n

j�

�kce,n
�m� �2

	D,n
�m,l��x��D,n

�m� �y���D,n
�m� �y���*,

�17b�

Ghh
�m,l��x,y;y�� = �

n

− j�

�kch,n
�m� �2

�B,n
�m,l��x��B,n

�m��y���B,n
�m��y���*,

�17c�

Ghe
�m,r��x,y;y�� = �

n

j�

�kce,n
�m� �2

	D,n
�m,r��x��D,n

�m� �y���D,n
�m� �y���*,

�17d�

Ghh
�m,r��x,y;y�� = �

n

− j�

�kch,n
�m� �2

�B,n
�m,r��x��B,n

�m��y���B,n
�m��y���*.

�17e�

ikewise, the z-components of electromagnetic fields at
he mth slice interfaces can be written as
�Hz
�m��xm−1 + 
,y�

Ez
�m��xm−1 + 
,y�� =
 dy��Qhe

�m��y,y�� Qhh
�m��y,y��

Qee
�m��y,y�� Qeh

�m��y,y���
�� Em−1�y��

Hm−1�y���
+
 dy��She

�m��y,y�� 0

0 Seh
�m��y,y���

�� Em�y��

Hm�y��� , �18a�

�Hz
�m��xm − 
,y�

Ez
�m��xm − 
,y�� =
 dy��Phe

�m��y,y�� 0

0 Peh
�m��y,y���

�� Em−1�y��

Hm−1�y���
+
 dy��Rhe

�m��y,y�� Rhh
�m��y,y��

Ree
�m��y,y�� Reh

�m��y,y���
�� Em�y��

Hm�y��� , �18b�

Here the open font Puv
�m� ,Quv

�m� ,Ruv
�m� ,Suv

�m� denote sixteen
perator kernels that transform the left and right pair of
-directed interfacial functions into the z-directed interfa-
ial functions through the h and e slice modes. They are
qual to the eight Green’s kernels defined in Eqs.
16b)–(16e) and Eqs. (17b)–(17e) evaluated at x=xm−1 and
t x=xm, respectively. In this case, we have

Puv
�m� = 
Guv

�m,l�
x=xm
, Quv

�m� = 
Guv
�m,l�
x=xm−1

, �19�

Rhe
�m� = 
Ghe

�m,l�
x=xm
, Suv

�m� = 
Guv
�m,r�
x=xm−1

, �20�

here the subscript u,v stands for e and h mode, respec-
ively. Note that in Eqs. (18) we have reflected the fact
hat Pee

�m�=Phh
�m�=0 and See

�m�=Shh
�m�=0 which can be easily

erified from Eqs. (19) and (20). The physical significance
s that inside a sliced waveguide the y-directed field com-
onent does not contribute to the z-directed component on
he opposite side if it is of the same polarization. The let-
er P is chosen for propagation and R is chosen for reflec-
ion. The letters Q and S are chosen for reflection and
ropagation, respectively, in the opposite direction. To as-
ist in remembering this association, just keep in mind
hat Q goes before R, P goes before S, and “left” goes before
right.” So P is from left to right while S is from right to
eft, and Q is the reflection operator on the left side just as

ig. 2. Definitions of P ,Q ,R ,S generalized impedance
atrices.
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is the reflection operator on the right side. Figure 2 fur-
her illustrates this relationship.

The field expressions of Ez
�M+1� and Hz

�M+1� for the last
lice can be obtained in a similar way. So far, we have de-
ived the fields within all slices in terms of the unknown
-directed functions on the slice boundaries. Next, we will
erive the equations that these unknown functions must
atisfy. First we consider a simple structure made of two
ielectric slices with just one interface. The z-component
lectromagnetic fields on either side of the interface
oundary must be the same for every point on the bound-
ry. From Eqs. (14) and (18), we obtain


 dy��Rhe
�1��y,y�� Rhh

�1��y,y��

Ree
�1��y,y�� Reh

�1��y,y���� E1�y��

H1�y���
=
 dy��Qhe

�2��y,y�� Qhh
�2��y,y��

Qee
�2��y,y�� Qeh

�2��y,y���� E1�y��

H1�y��� . �21�

e can further simplify this equation by upgrading the

our open-font symbols P ,Q ,R ,S into bold face letters t

c
w
s
n
n
m
t
fi
fi
d
t
t

E
m
a
c
w
t
H
o
(
f
t
r
c
g
c

,Q ,R ,S which, in this paper, represent the matrices.
hus Eq. (21) becomes


 dy��R�1� − Q�2��F1 = 0, �22�

here Fi is the vector of the unknown functions as

Fi = � Ei�y��

Hi�y���, i = 1,2, . . . ,M. �23�

et A be one of the P ,Q ,R ,S matrices organized as

A�m� = �Ahe
�m� Ahh

�m�

Aee
�m� Aeh

�m�� . �24�

or the complex RWG structure with more than two in-
erfaces, we can obtain the banded general VCTMIE as

he matrix equation

 dy��
�R�1� − Q�2�� − S�2� 0 ¯ 0

P�2� �R�2� − Q�3�� − S�3� 0 ]

0 � � � 0

] � P�M−1� �R�M−1� − Q�M�� − S�M�

0 ¯ 0 p�M� �R�M� − Q�M+1��
��

F1

F2

]

FM−1

FM

� = 0. �25�
ote that the sub matrices P�m� and −S�m� are equal to
ach other due to the symmetry of the propagation matri-
es. Using the notations defined in Eqs. (23) and (24), we
ave arrived at Eq. (25) with a tridiagonal matrix struc-
ure that looks like those derived for the scalar case. In
ther words, the unknown vector functions are related to
heir two nearby neighbors. Each boldface symbol on the
iagonal represents a full 2�2 operator matrix, while the
ff-diagonal symbols P�m� and S�m� are 2�2 diagonal ma-
rices. We conclude that the final matrix in Eq. (25) is ac-
ually a banded matrix of a bandwidth equal to 5. In part
I18 we will continue the discussion of the numerical
ethods for solving Eq. (25) as well as discussion of vari-

us waveguide examples computed by this VCTMIE for-
ulation.

. DISCUSSION
. Continuity Properties of Electromagnetic Field
omponents within the Slice Waveguides
n the left and right columns of Fig. 3, we compare the
undamental mode field profiles between h and e modes
nside a 1D dielectric slab waveguide with distinct core
nd cladding indices. Since these are the basic building
locks for the full-vector solutions of 2D ridged
aveguides, we will carefully examine the continuity
roperties of these components. We note first that inside
he slab waveguide, the vertical electric field intensity
omponent Ey�y� jumps at the core–cladding interface,
hile all other components are continuous. Inside the

lab waveguide, Ex�y� ,Ez�y�, being the tangential compo-
ents, are by default continuous. The normal flux compo-
ents, including the displacement current Dy�y� and the
agnetic flux density By�y�, are also continuous across

he interface. However, the continuity properties of their
rst- and second-order derivatives are not clear from the
gure. For example, �Ey /�y is the same (except at the in-
ex boundary) as �1/�r�y���Dy /�y, which is linearly related
o Ex ,Ez. We conclude that the two-sided normal deriva-
ive of Ey is continuous.

As for the four transverse EM components
x ,Ez ,Hx ,Hz we turn to the generating Eqs. (A16), re-
embering that all partial derivatives with respect to x

nd z are the same for all layers. Thus, if a function is
ontinuous then also are all its higher-order derivatives
ith respect to the x and z axes. The first normal deriva-

ive of the e mode’s Ex ,Ez components and the h mode’s
x ,Hz components are linearly related to the second-

rder normal derivative of Dy and By. By Eqs. (A13a) and
A13b) they are related to n2�y�k0

2� �Dy /By� and are there-
ore discontinuous. We may also apply similar arguments
o get the continuity properties of the second-order de-
ivatives of these functions since they determine the con-
avity of the curves. In particular, we know that for a
uiding mode, the square of the transverse propagation
onstant �2+k2 is between n2k2 and n2k2; this will pro-
xF 0 0 1 0
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uce a sign change in the second derivatives of the bottom
urves of Fig. 3 when the condition is applied to Eqs.
A13) and (A14). The second derivatives of all other com-
onents retain the same sign.

. Fields around the Dielectric Corners
t is known that the EM field near a right-angle dielectric
orner can be quite complex and tricky.24 Generally
peaking, Et ,Dn are continuous across dielectric inter-
aces; therefore, En and Dt become discontinuous in a
tep-index medium. The unknown interfacial functions
y�y� and Hy�y� are continuous across slices. Yet the same
y�x ,y� becomes discontinuous once it is inside the inho-
ogeneous slice as it becomes a normal component. We

now that when a discontinuous function is expanded in
erms of a set continuous basis, the series representation
f the discontinuous function will overshoot (sometimes
s much as 10%) and will oscillate around the points of
iscontinuity. Moreover, as we increase the upper summa-
ion limit, the overshots and the oscillation will not die
own; we see only the shrinking of the problematic re-
ion. This is the well-known Gibb’s phenomenon.25 We
ill discuss this further and give detailed numerical ex-
mples in part II.18

. VCTMIE Formulation without Using Perfectly
onducting Walls
n our VCTMIE formulation for 2D complex dielectric
aveguides we place a PCW on the top and bottom of the

ig. 3. Fundamental mode field components of TE-to-y and TM-
o-y modes for a slab waveguide. The x coordinate is in microme-
ers, while the y coordinate represents relative field intensity.
ue to symmetry, only half the figures (positive x) are shown. �
1.5 �m, n1=1.5, n0=1.0, d=1.
tructure. For waveguides with certain symmetry this is
xactly what we want so that we may reduce the domain
f the problem and cut down the computational costs. For
pen dielectric structures, the use of PCWs becomes an
pproximation. For an unbounded multilayered wave-
uide, the modes are composed in terms of both discrete
uiding modes and continuous radiation modes.26 The six-
een PQRS operators will be modified to include a finite
ummation term for the discrete spectrum and an inte-
ral term (with the upper limit extended to infinity) for
he continuous spectrum. In doing so, we not only make
he formulation more complex than it already is but also
mpose a very difficult task for numerical implementation
f the VCTMIE. Without an exact formula, an integral
ust be evaluated numerically by discrete sum using,

ay, the Gaussian quadrature. Any such numerical inte-
ration method is essentially a discretization process that
enerates a set of nonorthogonal functions. The unknown
xpansion coefficient vectors can no longer be written ex-
licitly as in Eqs. (6a). Thus the integral equation can not
e derived. VCTMIE formulation for the open structures
ill be less useful for numerical purposes.

. Comparison with the Film-Mode-Matching Method
mong various methods of dealing with vectorial modal
olutions of RWGs, the FMM structure resembles that of
he VCTMIE method most closely. The main difference is
hat the FMM lacks the exact integral equation and the
esulting benefit from the new formulation, such as the
exibility of choosing arbitrary expansion bases for the
nknown vertical tangential fields Ey and Hy. Unknowns

n the FMM method are the coefficient vectors of slice
odes in each slice section, whereas in VCTMIE the un-

nowns are interfacial field functions. In the FMM ex-
mple, a rectangular waveguide was analyzed by simul-
aneous mode-matching along the slice interface with the
- and z-components of electric and magnetic fields with a
nite number of slice modes [N�m� modes for each region/
olarization] from slices I and II. The advantages of FMM
re the easy comprehension of the mode-matching prin-
iple and its superior computational efficiency in which
ery accurate waveguide propagation constants can be ob-
ained with relatively few slice modes. However, many
ore slice modes are needed, along with larger matrices,

o compute accurate field solutions and minimize the ar-
ificial discontinuity in the homogeneous regions of vector
elds across the slice interfaces. Under the VCTMIE for-
ulation, the unknown interfacial Ey�y� and Hy�y� func-

ions can be efficiently expressed in terms of some opti-
ized basis functions with fewer terms [Nb

�m� terms for
ach interface/polarization]. We then use as many slice
odes as are needed �N�m��5Nb

�m�� to match the chosen
asis functions. As a result, vector fields across the slice
nterfaces become continuous in the homogeneous re-
ions, and the Gibb’s phenomenon at the dielectric cor-
ers is greatly reduced (see Part II,18 Fig. 7). If we choose
he interfacial basis functions to be one of the slice modes
nd keep the number of terms in PQRS operators all the
ame, the final coupled matrix equation will be the same
s those obtained by FMM. The two methods are then
dentical.
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The advantage of VCTMIE is that the size of the non-
inear matrix equation remains unchanged while the
osts of computing the additional slice modes and the fi-
al matrix increase only linearly with respect to the total
umber of slice modes used in each region (see Part II,18

q. (18)). Both FMM and VCTMIE methods are depen-
ent on the capability of constructing complete 1D layer
odes of given complex dielectric slab waveguides, which

s hard to do in the case of a structure with nearly degen-
rate modes. Finally, we wish to point out that there are
ther ways to solve the VCTMIE that are otherwise not
vailable to FMM. For example, using approximate solu-
ions to the unknown Ey�y� and Hy�y� functions (via some
ffective-index method or some iterative solutions), all the
ode field solutions can be obtained with Eqs. (6)–(8).

. CONCLUSION
n this paper, we have constructed a rigorous VCTMIE
ormulation to study modal characteristics of rectangular-
attern dielectric waveguides as commonly found in inte-
rated optical circuits. In this vector formulation, a RWG
s first approximated by a collection of dielectric slices.

ithin each slice the 4�4 kernel matrix constructed from
oth TE-to-y and TM-to-y modes map the unknown
-directed interfacial functions on the slice boundaries
nto the z-component electric and magnetic fields. The
ontinuity of these z-directed EM field components along
ach slice interface provide governing integral equations
n the unknown interfacial functions Ey and Hy. To solve
he unknown functions, we construct sets of suitable ex-
ansion functions and turn VCTMIE into an optimized
atrix equation. We leave the verification of our formula-

ion as well as detailed numerical discussion to part II.18

PPENDIX A: DERIVATION OF THE TE-y
ND TM-y STURM–LIOUVILLE FORM

or 1D dielectric layered media, we obtain from time-
armonic Maxwell’s equations

1

�0
� � � 1

j��0�r�y�
� � B̄� = − j�B̄. �A1�

r�y� is the relative permittivity and �0 is assumed in all
egions, and they are dropped for simplicity. Using the
ector identity

� � ��Ā� = �� � Ā + � � � Ā

nd

� · B� = 0, �A2�

q. (A1) can be rewritten as

�2B̄ + k0
2�r�y�B̄ − �r�y� �

1

�r�y�
� �� � B̄� = 0. �A3�

ote that the term ��1/�r�y�� has only the y component,
nd the result after the curl operation will not produce
ny y component. Therefore, the resulting differential
quation for the y component of the magnetic field in Eq.
A3) is

�2By + k0
2�r�y�By = 0. �A4�

We seek the solution in the following form:

By�x,y,z� = �B�y�exp�− jkxBx�exp�− j�z�. �A5�

hus Eq. (A4) can be written as the following differential
quation in Sturm–Liouville (S-L) form:

��B� �y��� + k0
2�r�y��B�y� = ��2 + kxB

2 ��B�y�. �A6�

ext, we seek to find the differential equation for the TM-
o-y case. We have

�0 � � � 1

�0
� � Ē� = k0

2�r�y�Ē. �A7�

pplying the vector identity for the double curls, we ob-
ain

��� · Ē� − �2Ē = k0
2�r�y�Ē. �A8�

sing � · �D̄ /��=��1/�� ·D̄+ �1/��� ·D̄, along with Gauss’s
aw � ·D̄=�s=0, we can rewrite Eq. (A8) as

�2
D̄

�r�y�
− �� �r��y�

Er
2�y�

Dy� + k0
2D̄ = 0. �A9�

inally equating the y component in Eq. (A9), we get

�2
Dy

�r�y�
+ � �r��y�

�y
2�y�

Dy��
+ k0

2Dy = 0. �A10�

imilar to Eq. (A5), we set

Dy�x,y,z� = �D�y�exp�− jkxDx�exp�− j�z�. �A11�

Substituting Eq. (A11) into Eq. (A10) and after a few al-
ebraic manipulations, we get

��D� �y�

�r�y� ��
+ k0

2�D�y� = ��2 + kxD
2 �

�D�y�

�r�y�
. �A12�

Rewriting Eqs. (A6) and (A12) in the standard S-L
orm, we have

LB��B�y�� = �B� �y� + k0
2�r�y��B�y� = �B�B�y�, �A13a�

LD��D�y�� = ��D� �y�

�r�y� ��
+ k0

2�D�y� = �D

�D�y�

�r�y�
, �A13b�

here

�B = kcB
2 = �2 + kxB

2 = �r�y�k0
2 − kyB

2 �y�, �A14a�

�D = kcD
2 = �2 + kxD

2 = �r�y�k0
2 − kyD

2 �y�. �A14b�

In the above equations kcB
2 (TE) and kcD

2 (TM) are the
igenvalues of the 1D slab waveguide for TE-to-y and TM-
o-y modes. Equations (A13) and (A14) also give the equa-
ion for the vertical wavenumbers kyB�y� (TE) and kyD�y�
TM). They are piecewise-constant functions determined
y the eigenvalues of the particular polarization/mode
nd the optical index within a given layer. On the other
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and, the horizontal transverse wavenumbers kxD, kxB,
uch as the propagation constant �, remain constant
ithin the entire slab structure for a given wavelength
nd mode order. From S-L theory,7 the solutions to Eqs.
A13) �B,n�y� /�D,n�y� are orthogonal eigenfunctions that
an be normalized such that


 �B,m�y��B,n�y�dy = 
m,n, �A15a�


 �D,m�y��D,n�y�

��y�
dy = 
m,n, �A15b�

here 
m,n is the Kronecker delta.
Given Dy�x ,y ,z� and By�x ,y ,z�, the remaining four EM

omponents can be obtained from the electromagnetic
heory as follows:

Ex =
1

kcB
2 �r�y�

�2Dy

�x�y
+

j�

kcD
2

�By

�z
, �A16a�

Ez =
1

kcB
2 �r�y�

�2Dy

�z�y
−

j�

kcD
2

�By

�x
, �A16b�

Hx =
− j�

kcB
2

�Dy

�z
+

1

kcD
2 �r

�2By

�x�y
, �A16c�

Hz =
j�

kcB
2

�Dy

�x
+

1

kcD
2 �r

�2By

�z�y
. �A16d�
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