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This study proposes an alternative to the weighted least-squares (WLS) procedure
for estimating the shape parameter of the Weibull distribution. Bergman (Journal
of Materials Science Letters 1986; 5:611–614), Faucher and Tyson (F&T) (Journal
of Materials Science Letters 1988; 7:1199–1203) suggested using different WLS
approaches for Weibull parameters. However, the simulation results show that the
novel approach is better than that of Bergman, and is not significantly different
from that of F&T. Furthermore, the novel approach is also simpler and easier to
comprehend. Copyright c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Weibull distribution is one of the most popular and widely used distributions in life testing and
reliability studies. The distribution was proposed by Weibull1, and its application to various failure
situations was further discussed by Weibull2. Among other applications, this distribution has been used

to investigate the fatigue life of ball bearings, describe electron tube failures and study the yield strength
of Bofors steel (see Knezevic3). The probability density function and cumulative distribution function are,
respectively,

f (x) = βα−βxβ−1 exp

[
−

(x

α

)β]

F(x) = 1 − exp

[
−

(x

α

)β] (1)

where x > 0, α > 0, β > 0 and are referred to as the scale and shape parameters, respectively.
The Weibull distribution hazard function is monotone increasing if β > 1, decreasing if β < 1 and constant

for β = 1. When β = 1, the Weibull distribution is the simple exponential distribution, once widely used as a
product life distribution but later found to be inadequate for many products. Some recent works on estimating
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and testing Weibull parameters include Bergman4; Faucher and Tyson (F&T)5; Sinha and Guttman6; Chaudhuri
and Chandra7; Ishioka and Nonaka8; Langlois9; Lockhart and Stephens10; Hossain and Howlader11; Drapella
and Kosznik12; and Hung13. This study is motivated by Johnson et al.14, who established a simple linear
relation for estimating the parameters by an approximation method. Recently, a similar approximation method
was introduced by Hossain and Howlader11, who provide unweighted least-squares estimation of Weibull
parameters. In fact, the two Weibull parameters α and β are easily obtained from least-squares analysis of
the linearity form of Equation (1):

ln{−ln[1 − F(x)]} = −β ln α + β ln x (2)

Thus, linear regression analysis can be performed for this equation, where the F -values are assigned based
on position i of an observation among n ordered x-values that form a set of observations. Supposing that X1,
X2, . . . , Xn form a random sample from Equation (1), and that X(1) < X(2) < · · · < X(n) are the order statistics,
then Equation (2) can be rewritten as

yi = ln{−ln[1 − F(x(i))]} = −β ln α + β ln x(i), i = 1, . . . , n (3)

where x(1) < x(1) < · · · < x(n) are observed ordered observations.
The estimator of F(x(i)) can be considered to follow the mean rank estimator

F̂ (x(i)) = i

n + 1

and the median rank estimator

F̂ (x(i)) = i − 0.3

n + 0.4

In reality, the two estimators can be derived from

F̂ (x(i)) = i − c

n − 2c + 1
, 0 ≤ c ≤ 1

(see D’Agostino and Stephens15) by setting c as 0 and 0.3, respectively.
Bergman3 emphasized that it is unreasonable for xi to have the same weight in Equation (3) and proposed

that a weight function should be used in performing the linear regression. The weight factor Bergman proposed
is

Wi = [(1 − F̂ (x(i))) ln(1 − F̂ (x(i)))]2 (4)

F&T5 also considered Equation (3) and used a continuous curve to obtain the asymptotic weight factor, which
can be expressed as follows:

Wi = 3.3F̂ (x(i)) − 27.5[1 − (1 − F̂ (x(i)))
0.025] (5)

Recently, Drapella and Kosznik12 suggested that yi in Equation (3) can be estimated from the Weibull
probability paper by using the empirical points, and α, β can be estimated with the least-squares method without
including the weight factor. Drapella and Kosznik proposed

ŷi = n!
(i − 1)!(n − i)!

i−1∑
v=0

(−1)v
(i − 1)!

v!(i − 1 − v)!
−0.5774 − ln(n − i + v + 1)

n − i + v + 1

as the estimator of yi and concluded that their rule estimator of β is unbiased, but has slightly greater variance
than the ordinary least-squares (OLS) procedure (without weight). Hung13 proposed a method similar to
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Bergman’s in Equation (6). Moreover, Hung suggested that the weight factor is given by

Wi = [(1 − F̂ (x(i))) ln(1 − F̂ (x(i)))]2∑n
i=1[(1 − F̂ (x(i))) ln(1 − F̂ (x(i)))]2

(6)

Furthermore, the mean-squared error of Hung’s estimator is smaller than those of Drapella and Kosznik12 in
all circumstances. In reality, the denominator of Hung’s estimator is constant. Therefore, Hung’s estimator is
the same as Bergman’s. In this article, a simulation study adopts Bergman’s method in preference to Hung’s.
This investigation proposes a new method of estimating the shape parameter of the Weibull distribution, the
details of which are presented in Section 2. Moreover, Section 3 uses a simulated study to compare the novel
method with that of Bergman4 and F&T5. Section 4 presents a brief discussion based on the simulation results.

2. METHOD

A simple transformation of a random variable with the Weibull distribution may become a standard exponential
distribution. Herein, the left-hand side of Equation (2)

−ln[1 − F(x)] =
( x

α

)β
is a standard exponential distribution. Let Z = −ln[1 − F(x)], then Equation (3) can be rewritten as

ln Z(i) = −β ln α + β ln x(i)

Assume that X1, X2, . . . , Xn are a random sample from the Weibull distribution and that X(1) < X(2) < · · · <
X(n) are the corresponding order statistics. Therefore, Z(1) < Z(2) < · · · < Z(n) are the corresponding order
statistics from a standard exponential distribution. Hence, the mean and variance of Z(i) are given by

E(Z(i)) =
i∑

j=1

1

n − j + 1
and Var(Z(i)) =

i∑
j=1

1

(n − j + 1)2

(see Balakrishnan and Cohen16). Moreover, from Bickel and Doksum17

Var(ln Z(i)) � Var(Z(i))

[E(Z(i))]2

Therefore, this section uses the WLS procedure and suggests the use of the weight factor

Wi = [E(Z(i))]2/Var(Z(i)) (7)

for estimating parameters α and β of the Weibull distribution. Moreover, the weighted sum of squares is given
by

Q =
n∑

i=1

Wi [yi − yi(xi)]2

where yi = ln Z(i) and yi(xi) = −β ln α + β ln x(i), i = 1, . . . , n.
Therefore, minimizing Q can obtain the WLS estimators of the parameters α and β which are given by

β̂ =
∑n

i=1 Wi

∑n
i=1 Wiyivi − ∑n

i=1 Wiyi

∑n
i=1 Wivi∑n

i=1 Wi

∑n
i=1 Wiv

2
i − (

∑n
i=1 Wivi)2

and α̂ = exp

[
β̂

∑n
i=1 Wivi − ∑n

i=1 Wiyi

β̂
∑n

i=1 Wi

]

where vi = ln x(i), i = 1, . . . , n.
When the data are censored, the WLS procedure can also be employed to estimate α and β by using the

similar technique. This technique for estimating α and β with the WLS procedure is not discussed here.
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Table I. Summary of the methods investigated

Method Equation for c Equation for Wi

1 0 (4)
2 0.3 (4)
3 0.5 (4)
4 0 (5)
5 0.3 (5)
6 0.5 (5)
7 — (7)

3. A SIMULATED STUDY

This section uses a simulation study to evaluate the performance of the estimators using the novel method,
Bergman and F&T. The methods of Bergman4 and F&T5 estimate F(x(i)) using the different values of c (= 0,
0.3, 0.5). Table I summarizes all of the methods.

For this, we propose a Monte Carlo study of 5000 randomly generated samples, for each sample size ranging
from 5 to 50. These samples were generated under the true values of α = 1 and β = 10. Appropriate criteria
are essential for choosing the best method. The standard deviation is directly related to the precision of the
estimators. Therefore, we consider those estimators having smaller standard deviations to be better. For all the
methods in Table I, we obtain the estimates of β, say β̂(1), β̂(2), . . . , β̂(5000) and calculate E(β̂), Ŝ2(β̂), and
M̂SE(β̂) after 5000 Monte Carlo trials, where

E(β̂) = 1

5000

5000∑
i=1

β̂(i)

Ŝ2(β̂) = 1

4999

5000∑
i=1

(β̂(i) − E(β̂))2

M̂SE(β̂) = 1

5000

5000∑
i=1

(β̂(i) − β)2

The results for α̂ are omitted here owing to space considerations and because the accuracy of the estimators
of α is significantly higher than those of β with a very small bias (<1% even in the worst-case scenario).
That is, β is the key parameter for assessing these methods. Hence, the following discussion only focuses
on the estimators of β. F&T5 noted that the most accurate WLS estimate is that with the weight factor
3.3F̂ (x(i)) − 27.5[1 − (1 − F̂ (x(i)))

0.025] when c = 0.3 (method 5 in this study). According to Table II the

M̂SE(β̂) of methods 1, 2 and 3, which are based on the weight factor [(1 − F̂ (x(i))) ln(1 − F̂ (x(i)))]2, are
slightly higher than that of method 7 (the novel method) when 9 ≤ n. However, no significant difference exists
between the novel method and methods 1, 2 and 3 regarding Ŝ(β̂). The difference in M̂SE(β̂) (or Ŝ(β̂))
between the novel method and methods 4, 5 and 6, which have 3.3F̂ (x(i)) − 27.5[1 − (1 − F̂ (x(i)))

0.025] as

the weight factor, is <3%. Hence, no significant difference in M̂SE(β̂) exists between the novel method and
F&T5. Furthermore, the difference in Ŝ(β̂) between the novel method and method 5 is nearly equal. Therefore,
almost no difference exists between the novel method and method 5 provided they are applied to complete data.
Simulation using censored data is also considered here. Table III lists the data scheme where a sample of size
20 contains six or ten pieces of observed data.

Under these data structures, Ê(β̂), Ŝ2(β̂) and M̂SE(β̂) are also calculated using the same procedure as with
complete data and listed in Table IV. The results listed in Table IV differ depending on the locations of the
observed data. Table IV indicates that the simulation results for censored data are in accordance with those for
complete data.
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Table II. Results of the estimation of β for seven methods and different sample sizes: average and standard deviation
β̂/β ± Ŝ(β̂)/β

Method

1 2 3 4 5 6
Bergman Bergman Bergman F&T F&T F&T 7

n for c = 0 for c = 0.3 for c = 0.5 for c = 0 for c = 0.3 for c = 0.5 Our method

5 0.869 ± 0.486 0.994 ± 0.559 1.105 ± 0.627 0.886 ± 0.495 1.022 ± 0.571 1.147 ± 0.643 0.947 ± 0.530
(0.536) (0.559) (0.636) (0.508) (0.572) (0.659) (0.532)

6 0.859 ± 0.418 0.969 ± 0.474 1.064 ± 0.526 0.873 ± 0.423 0.992 ± 0.480 1.099 ± 0.532 0.927 ± 0.451
(0.441) (0.475) (0.530) (0.442) (0.480) (0.541) (0.457)

7 0.854 ± 0.348 0.953 ± 0.392 1.036 ± 0.434 0.864 ± 0.348 0.971 ± 0.391 1.065 ± 0.431 0.913 ± 0.371
(0.377) (0.395) (0.436) (0.374) (0.392) (0.435) (0.381)

8 0.858 ± 0.319 0.949 ± 0.358 1.023 ± 0.394 0.866 ± 0.317 0.964 ± 0.354 1.049 ± 0.387 0.911 ± 0.335
(0.349) (0.361) (0.395) (0.345) (0.356) (0.390) (0.347)

9 0.859 ± 0.296 0.943 ± 0.330 1.008 ± 0.362 0.864 ± 0.291 0.954 ± 0.321 1.031 ± 0.349 0.906 ± 0.308
(0.328) (0.335) (0.362) (0.337) (0.325) (0.350) (0.322)

10 0.864 ± 0.272 0.941 ± 0.302 0.999 ± 0.330 0.866 ± 0.265 0.950 ± 0.291 1.020 ± 0.314 0.906 ± 0.280
(0.304) (0.308) (0.330) (0.297) (0.296) (0.315) (0.296)

12 0.879 ± 0.246 0.946 ± 0.271 0.996 ± 0.294 0.878 ± 0.236 0.953 ± 0.256 1.014 ± 0.274 0.913 ± 0.249
(0.274) (0.277) (0.294) (0.266) (0.261) (0.275) (0.263)

14 0.891 ± 0.215 0.951 ± 0.252 0.995 ± 0.271 0.886 ± 0.220 0.953 ± 0.232 1.008 ± 0.246 0.924 ± 0.228
(0.254) (0.256) (0.271) (0.244) (0.236) (0.246) (0.242)

16 0.900 ± 0.213 0.953 ± 0.231 0.991 ± 0.246 0.893 ± 0.199 0.955 ± 0.213 1.004 ± 0.225 0.924 ± 0.210
(0.236) (0.236) (0.246) (0.226) (0.218) (0.225) (0.223)

18 0.910 ± 0.206 0.958 ± 0.223 0.992 ± 0.237 0.900 ± 0.188 0.957 ± 0.201 1.002 ± 0.211 0.930 ± 0.200
(0.225) (0.227) (0.237) (0.213) (0.205) (0.211) (0.211)

20 0.916 ± 0.192 0.960 ± 0.207 0.990 ± 0.218 0.905 ± 0.175 0.957 ± 0.185 0.998 ± 0.194 0.933 ± 0.186
(0.210) (0.211) (0.218) (0.199) (0.190) (0.194) (0.197)

30 0.940 ± 0.163 0.971 ± 0.172 0.991 ± 0.178 0.927 ± 0.143 0.966 ± 0.150 0.996 ± 0.155 0.950 ± 0.151
(0.173) (0.174) (0.178) (0.161) (0.153) (0.155) (0.159)

40 0.955 ± 0.144 0.977 ± 0.149 0.993 ± 0.153 0.941 ± 0.125 0.973 ± 0.130 0.996 ± 0.133 0.961 ± 0.132
(0.151) (0.151) (0.154) (0.138) (0.133) (0.133) (0.138)

50 0.964 ± 0.129 0.982 ± 0.133 0.995 ± 0.136 0.951 ± 0.111 0.977 ± 0.114 0.996 ± 0.117 0.968 ± 0.116
(0.134) (0.135) (0.137) (0.121) (0.117) (0.117) (0.120)

Note: the value in parentheses is
√

M̂SE(β̂)/β.

Table III. The different cases of censored data

Case The location of the observed data Case The location of the observed data

A1 2,4,6,8,10,12,14,16,18,20 B1 1,3,7,11,15,19
A2 1,3,5,7,9,11,13,15,17,19 B2 1,5,10,16,18,20
A3 1,2,3,4,5,6,7,8,9,10 B3 3,6,9,13,15,18
A4 3,4,5,6,7,8,9,10,11,12 B4 4,5,9,10,17,20
A5 5,6,7,8,9,10,11,12,13,14 B5 5,10,15,17,18,19
A6 7,8,9,10,11,12,13,14,15,16 B6 1,2,3,4,5,6
A7 9,10,11,12,13,14,15,16,17,18 B7 10,11,12,13,14,15
A8 11,12,13,14,15,16,17,18,19,20 B8 15,16,17,18,19,20
— — B9 8,9,10,11,12,13
— — B10 12,13,14,15,16,17

4. CONCLUSION

Bergman4 and F&T5 demonstrated that WLS is more accurate and has smaller variance than OLS without
weight in parameter estimators. Therefore, there is no comparison between the novel method and the OLS
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Table IV. Results of the estimation of β for seven methods and different censored data: average and standard deviation
(β̂/β ± Ŝ(β̂)/β)

Method

1 2 3 4 5 6
Observation Bergman Bergman Bergman F&T F&T F&T 7

position for c = 0 for c = 0.3 for c = 0.5 for c = 0 for c = 0.3 for c = 0.5 Our method

A1 0.913 ± 0.181 0.963 ± 0.210 0.993 ± 0.222 0.901 ± 0.170 0.965 ± 0.192 1.008 ± 0.200 0.949 ± 0.191
(0.215) (0.214) (0.222) (0.201) (0.195) (0.200) (0.198)

A2 0.918 ± 0.199 0.963 ± 0.213 0.994 ± 0.223 0.909 ± 0.189 0.961 ± 0.200 0.999 ± 0.208 0.925 ± 0.198
(0.215) (0.216) (0.223) (0.211) (0.204) (0.208) (0.209)

A3 0.905 ± 0.324 0.969 ± 0.353 1.015 ± 0.378 0.893 ± 0.325 0.966 ± 0.348 1.023 ± 0.367 0.897 ± 0.326
(0.338) (0.355) (0.378) (0.342) (0.349) (0.367) (0.342)

A4 0.952 ± 0.338 0.993 ± 0.353 1.022 ± 0.364 0.956 ± 0.338 0.998 ± 0.351 1.029 ± 0.364 0.963 ± 0.341
(0.342) (0.353) (0.365) (0.341) (0.353) (0.365) (0.343)

A5 0.971 ± 0.337 1.004 ± 0.349 1.027 ± 0.357 0.975 ± 0.337 1.008 ± 0.348 1.031 ± 0.356 0.986 ± 0.341
(0.339) (0.349) (0.358) (0.338) (0.348) (0.358) (0.341)

A6 0.976 ± 0.327 1.006 ± 0.337 1.028 ± 0.344 0.979 ± 0.326 1.010 ± 0.336 1.031 ± 0.343 0.998 ± 0.332
(0.328) (0.337) (0.344) (0.326) (0.336) (0.344) (0.332)

A7 0.970 ± 0.320 1.003 ± 0.331 1.026 ± 0.339 0.973 ± 0.317 1.007 ± 0.328 1.032 ± 0.336 1.004 ± 0.328
(0.321) (0.331) (0.340) (0.318) (0.328) (0.338) (0.328)

A8 0.939 ± 0.296 0.987 ± 0.319 1.022 ± 0.338 0.929 ± 0.291 0.990 ± 0.309 1.041 ± 0.325 1.000 ± 0.308
(0.303) (0.319) (0.339) (0.299) (0.309) (0.327) (0.308)

B1 0.913 ± 0.197 0.964 ± 0.211 0.999 ± 0.222 0.908 ± 0.195 0.966 ± 0.205 1.009 ± 0.213 0.927 ± 0.203
(0.216) (0.214) (0.222) (0.216) (0.208) (0.213) (0.216)

B2 0.922 ± 0.191 0.978 ± 0.209 1.016 ± 0.226 0.896 ± 0.183 0.962 ± 0.195 1.017 ± 0.206 0.934 ± 0.192
(0.206) (0.211) (0.227) (0.210) (0.199) (0.207) (0.203)

B3 0.941 ± 0.223 0.978 ± 0.233 1.006 ± 0.240 0.944 ± 0.219 0.983 ± 0.228 1.011 ± 0.235 0.964 ± 0.225
(0.231) (0.234) (0.240) (0.226) (0.229) (0.235) (0.228)

B4 0.939 ± 0.208 0.982 ± 0.224 1.014 ± 0.238 0.932 ± 0.195 0.985 ± 0.206 1.029 ± 0.215 0.977 ± 0.205
(0.217) (0.225) (0.239) (0.207) (0.207) (0.217) (0.206)

B5 0.952 ± 0.224 0.990 ± 0.233 1.016 ± 0.240 0.947 ± 0.222 0.986 ± 0.232 1.014 ± 0.239 0.982 ± 0.229
(0.229) (0.234) (0.240) (0.229) (0.232) (0.239) (0.229)

B6 0.908 ± 0.502 1.007 ± 0.558 1.086 ± 0.610 0.913 ± 0.519 1.023 ± 0.575 1.114 ± 0.621 0.916 ± 0.521
(0.513) (0.558) (0.616) (0.526) (0.575) (0.631) (0.527)

B7 1.062 ± 0.577 1.093 ± 0.594 1.115 ± 0.606 1.064 ± 0.578 1.096 ± 0.595 1.118 ± 0.607 1.087 ± 0.590
(0.580) (0.601) (0.613) (0.582) (0.603) (0.619) (0.597)

B8 0.942 ± 0.448 1.012 ± 0.484 1.067 ± 0.517 0.953 ± 0.472 1.041 ± 0.514 1.121 ± 0.552 1.058 ± 0.511
(0.452) (0.484) (0.522) (0.474) (0.516) (0.565) (0.514)

B9 1.056 ± 0.583 1.087 ± 0.601 1.109 ± 0.613 1.057 ± 0.583 1.089 ± 0.601 1.111 ± 0.613 1.072 ± 0.592
(0.586) (0.607) (0.623) (0.586) (0.607) (0.623) (0.596)

B10 1.047 ± 0.565 1.083 ± 0.584 1.108 ± 0.598 1.051 ± 0.567 1.087 ± 0.587 1.113 ± 0.601 1.088 ± 0.587
(0.567) (0.590) (0.608) (0.570) (0.593) (0.612) (0.593)

Note: the value in parentheses is
√

M̂SE(β̂)/β.

without weight here. This investigation uses a simple method to construct weight factors based on the knowledge
of the characteristics of exponential distribution and the relation with the Weibull distribution. Simulation results
demonstrate that the novel method is more precision and has smaller variance than Bergman’s WLS estimators.
The proposed method and that of F&T5 do not differ significantly in terms of precision. For different models,
F&T5 must find the approximate function (4) as a weight factor and must select the value c to fit F(x(i)).
Meanwhile, the novel method does not need to worry about the problem of setting c. Therefore, the novel
method is appropriate and practical.

The difference between Hung’s and Bergman’s estimators is Equation (6) in Hung’s paper has∑n
i=1[(1 − F̂ (x(i)))(ln(1 − F̂ (x(i))))]2 in the denominator. Both Bergman and Hung’s methods have equal

estimator for the shape parameter β. Therefore, it is not essential to have the denominator from the WLS point
of view and Hung’s method is unnecessary. Therefore, this study does not make any comparisons between the
novel method and Hung’s method.
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