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ABSTRACT

Concern with increasing bankruptcy problems in practice, the credit risk of counterparty
default has been paid attention for pricing financial assets. This article bases on two Markov
processes, Hull-White model and Jarrow-Turnbull model, to develop a risky term structure of
interest rate. In addition, we also extend HW two-factor model to build a richer pattern of
risky term structure. The risky trees not only fit the original term structure but also embrace
credit information of underlying assets. Throughout lattice calculation we can derive future
spot rate and the parameters of bankruptcy processes, which can be estimated from observable
data. Therefore, it is a useful method for pricing credit sensitive bonds and spread-adjusted
contracts, such as options of interest rate, cap, and swaps. The applications include two
simulations of interest rate derivatives, put option and cap. With the numerical analysis we
infer the impact of different parameter inputs on option value.
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1. Introduction

The transactions of interest-rate-contingent claims such as caps, swaptions and bond
options have become popular these years. In the previous decades, many faculties were
dedicated to the term structure of default-free interest rate for pricing interest-rate derivatives
that are assumed no default risk of counter party. In the real world, however, many options
and financial assets contain option-like payoffs sold by firms with limited assets or they are
traded on OTC without insurance. For such situation, the no-default assumption is far less
defensible. Concern with increasingly bankruptcy problems in practice, recently academic
literature has taken both early default and interest rate risk into account.

1.1 Credit Risk

Merton (1974) brought up a concept about risk structure of interest rates for pricing
corporate liabilities. They related “risk” as the possible gains or losses to bondholders
stemmed from the changes in the probability of default not the changes in interest rates in
general. He pointed out, at given term structure, the price differentials among bonds are as
results of differences in the probability of default. The model is so-called structural model,
which focuses on the relation between default and asset value in an explicit way. However,
Merton’s model does not generate the levels of yield spreads that observed in the market.

Follow the Merton’s idea, more examples of imbedded options on the corporate debt
have been proven, such as Black and Cox (1976), Ho and Singer (1982), Chance (1990), and
Kim, Ramaswamy, and Sundaresam (1993). They took defaultable derivatives as contingent
claims not on the financial securities themselves, but as “compound options” on the assets or
underlying the financial securities. Nevertheless, these approaches are difficult to implement
in practice because all of the firm’s assets are neither tradable nor observable. Moreover, all of
the other liabilities of the firm senior to the corporate debt must first (or simultaneously) be
valued, that brings about time-consuming computation.
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Alternative default risk factor stems from the derivatives writer. Such an option, called
vulnerable option, i.e., option is privately written and is not guaranteed by a third party, is
mentioned in the article of Johnson and Stultz (1987). They proved the value of a vulnerable
European option could fall with time to maturity, with the interest rate, and with the variance
of the underlying asset. Also, they study how the comparative-static properties of vulnerable
options differ from those of options without default risk. Hull and White (1995) extended
Johnson and Stultz model to cover situations where other equal ranking claims can exit. It
shows how the value of a vulnerable security can be related in a consistent way to the
no-default value of the security, the values of default-free zero-coupon bonds, and the values
of vulnerable zero-coupon bonds that would be issued by derivative writer. However, they do
not price options on assets with credit risks nor do they analyze the hedging of vulnerable
options.

Jarrow and Turnbull approach (1995) presents a technique for valuing options on a term
structure of securities subject to credit risk. This approach value defaultable coupon bonds
and vulnerable options in the foreign currency which takes as given a stochastic term structure
of default-free interest rates and a stochastic maturity specific credit-risk spread. The
advantage of this article is, given risk-free term structure and risky term structure, option type
features can be priced in an arbitrage free manner using the martingale measure technology. In
addition, it provides a closed-form lattice result.

Nevertheless, Jarrow and Turnbull merely used BDT default-free term structure to
simplify the process of the evaluation. Note that BDT model is a conventional binary tree
with probabilities of 0.5, the model lacks of sufficient information about the evolution over
time of the term structure of volatilities and substantial inability to handle the conditions
where the impact of a second factor could be of relevance. To enhance the effectiveness of
pricing model, better risk-free term structure should be concerned.

1.2 Risk-Free Term Structure of Interest Rate

Ho and Lee (1986) were pioneers in the development of no-arbitrage model in the form
of a binomial tree of discount bond prices. The model involves two parameters including the
short-rate standard deviation and the market price of short rate. By Ho and Lee model
zero-coupon bond and European options on zero-coupon bond can be valued analytically.
Nevertheless, the drawbacks of the model are no mean-reversion process and it gives the user
very little flexibility in choosing the volatility structure since all spot and forward rates have
the same standard deviation, i.e. the average direction in which interest rates move over the
next short period of time is always the same.

Heath, Jarrow and Morton (1992) proposed a general approach to constructing models of
the term structure which involves specifying the volatilities of all forward rates at all times
and the initial values of the forward rates are chosen to be consistent with the initial term
structure. In addition, they extended one-factor to multi-factor arbitrage-free models of the
term structure. A multi-factor HIM model probably provides the most realistic description of
term structure movements, however, for lattice- or finite-differences- based approaches the
computational cost generally grows with the power of the number of factors, HIM model has
to be implemented by using the Monte Carlo technique or a non-recombining tree.
Intrinsically, HIM model is a non-Markov, which indicates the distribution of interest rates in
the next period depends on the current rate and also on rates in earlier period. In that it brings
about the HIJM process cannot be mapped onto a recombining tree, thus compound or
American options cannot be dealt with by back-wards induction using finite-difference grids
or recombining lattices, and number of nodes at time  grows exponentially with  so that
accurate pricing is computationally extremely time consuming.

A significant breakthrough took place when Hull and White (1994) introduced a class of
models, i.e. the Hull-White extended-Vasicek model, to incorporate deterministically
mean-reverting features. They noted, in a long run, all yield curves should become reasonably
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flat and a positive mean reversion must prevail in order to price very long caps. What is the
comparative advantage brought about by HW approach is that allows perfect matching of an
arbitrary initial term structure and analytically tractable. With recombining trinomial lattice,
not only closed—form solutions could be obtained for the prices of derivatives but model
calibration also could be carried out in an efficient way. In their companion sequel article
(Hull, 1994), a two-factor Markov model of the term structure was proposed, which is a
method for combining trinomial trees for two correlated variables into a single
three-dimensional tree describing the joint evolution of the variables.

This article applies trinomial risk-free term structure and martingale probability of
default to build a risky term structure. Furthermore, it also extends to a three-dimensional
term structure.

2. Material and Methods
This section describes the approaching steps of building risky term structure. The basis
model is Hull-White Model for which we can build a risk-free interest rate tree and then apply
it with Jarrow-Turnbull model. Since both models are Markov, we can derive a combining
risky tree. The specific description is as following.

2.1 Hull-White One-Factor Model

The obvious difference between interest rates and stock prices is that short-term interest
rate will gradually pull back to some long-run average level. Hence the short rate should
follow a mean-reverting process. See Figure 1, when the short rate is above (below) a
long-term level it should experience a downward (upward) pull towards this level. The
process of short rate proposed by Hull and White (1994) is described as:

dr = (6(t) — ar)dt + odz Q)
or
dr :a{%—r}dtﬂ;dz . (2)

Where a and o are constants. The process of mean reversion is of the short rate pulled to
a level O(t)/a at speed of a. Superimposed upon this “pull” is a normally distributed

stochastic term o dz. Once a and o are chosen then the entire term structure can be
determined. Upon numerical implementation, HW model constructs a computational trinomial
lattice as an interest-rate tree without risk. The discrete-time tree comprises mean reversion
character and assumes the discount rates vary from node to node. And if the time step on the
tree is A't, the rates on the tree are the continuously compounded A t- period rates. A usual
assumption is that the A t-period rate, R, follows the same stochastic process as the
instantaneous rate, r, in the corresponding continuous-time model.

Tree Branching Probability
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Figure 1 The Branching and Probability in Each Region
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The first step for constructing r-tree involves defining a new variable r” and sets &(t) and

the initial value of r”equal to zero. Equation (3) is the process for r”, and its mean and the
variance of the change in r~ are given by (4) and (5):

dr’ =-ar’dt+o,dz, . 3)
E[dr']=Mx =™ -1)x (4)
Var[dr']=V =c?(1-¢e*")/2a (5)

In addition, the space between r -values on the trinomial lattice equals+3v and the
non-standard branching takes place at £+ max j where max j is the smallest integer of

greater than 0.184/M. At node jAr”, the up-, middle-, and down-branching probabilities are
as following. Using recursively computation the price of zero-coupon bond at each time step,
(1+2)At, is given by
n(i)
P((i+DAt) = ZQ(i, j)exp[—(alpha(i) + jAr)At] (6)
-n(i)

Q(, j) = ZQ(i —1,k) *Pr(k, j)exp[-(alpha(i —1) + kKAr)At] (7)

In Z”(‘()A)Q(i, j)exp(= jArAt) — In P(i +1)
—=n(l 8

A (8)

with Q(0,0)=1 and r(0,0) = alpha(0). Where Q(i, j) denotes the value today of a certain,
without default risk, one dollar paid in state j at time i, Pr(k,j) is the probability of

moving from time-i node k to node j attime(i+1). Add alpha(i) to r" interest rate
tree then the final interest rate tree matches the initial term structure. Since computational
lattices are discrete but finite, numbers of zero-coupon bonds are assumed to describe the
default-free term structure and the short rates are also regarded as the driven factor for pricing
interest derivatives.

alpha(i) =

2.2 Jarrow-Turnbull Model

The above bond process for default-free debt is assumed that pricing process depends
only on the spot interest rate. However, when we consider the credit risk embedded in the
underlying asset, the branching probabilities of each node would not be the same. These
so-called pseudo- probabilities need to be adjusted when default occurs. Jarrow and Turnbull
(1995) use BDT model, which is a short-term interest rate lognormal distribution with simple
branching probability of 0.5, to handle risky bonds.

Instead of BDT model, we select Hull and White’s default-free term structure model as a
better approach for applying in the JT model since it takes more consideration about
mean-reversion and a good fit of initial term structure.

Assume spot interest rate process and the bankruptcy process are independent under the
pseudo-probabilities we use the observed term structures of zero-coupon bond price and risky
corporate bond to determine the martingale probabilities of default. Let o(t,T;DS,) is the
time-t value of a zero-coupon bond issued by the credit risk firm, and the symbol DS,
denotes the default status of the contract at time U as follows:

DS, — D ; Default has not occurred at time  t )
' | D; Default has occurred at or before time t

If default occurs, the buyer will receive less than the promised amount, i.e. a recovery rate of
o or afraction amount of principle. For example, the risky bond’s value at the maturity is



1; probability 1-u(t) if DS, =D
o, probability u(t) if DS, =D
Where u(t) is time-t martingale probability that we expect default may occur at next time

t+1 however, it has not happened yet. Thus, there are two possible credit status, default or
non-default, at every interest rate level of r(i, j). On the other hand, if default has occurred at

or before time t, the risky bond still remains in default in the future and the payoff ratio of
maturity is o . Figure 2 shows a two-period risky interest tree, rectangular shape denotes
default has not occurred till now and ellipse shape denotes default does occur. This tree
simultaneously considers interest rate movement and default probabilities. This model
assumes both risk-free process and default process are independent, where credit risk is
embedded in the value of coupon bond.

o(T,T;DS,) = Face value*{ (10)

t=0 t=1 t=2

1

[T-uD]

u(l)

[1-uD)]

u(l)

Figure 2 Two Period Risky Debt Default Process

The values of six possible statuses at time =1 for a risky bond with maturity of two are:
vs (1,2;D) =100x {[1-u(1)]+ u(2)d}x exp(-r(1))
vy (1,2;D) =100x o x exp(-r(11)
ve (1,2;D) =100x { [1-u(1)]+ u(1)s}x exp(-r(1,0)) (11)
ve: (1,2;D) =100x O x exp(-r(10))
vy (1,2,D) =100% { [1-u(1)]+ u(1)s}x exp(-r(1,-1))
vy (1,2;D) =100x O x exp(-r(1-1))

The two-year risky tree is derived from combination of Hull-White trinomial tree and

Jarow-Turnbull martingale probabilities. If the default has not occurred at time t then the
conditional (martingale) probability that default occurs at time t+1 is denoted by uf(t),

otherwise the martingale probability will be 1—u(t) in the no-default condition. Under the

martingale probabilities (see Jarrow and Turnbull 1995), the value of normalized prices with
only one period zero-coupon bond is given by

v(0,1; D) _ go| bt DS,) (12)
AQ0) LAY

Where A(t) is discount factor at time U, i.e. A(l)=exp(r(0)) and A(0)=1, and EQ
denotes the time-t conditional expected value when we are computing the expected value of
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the option at time t+1, using the equivalent martingale probabilities given whatever
information is available at time t. Simply equation (11), the formula of risky bond value is

v(0,1,D) =100 x { [L— u(0)]+ & x u(0)}/ AQ)
= BF(0,1) x {[L—u(0)]+ & x u(0)}

Note that BF(0,t) = % The martingale probability that default occurs by the end of the

(13)

first year can be derive as

|, vOLD)| /.
y(O){l BF(O,l)} /(1 5). (14)

Using long-term maturity data of asset we can extend long-run default process. Assume a
risky corporate bond matures at second year. The present value of default-free bond with
maturity time two, which denotes as BF(0,2), is

Pr(0,0,1) x exp(-r(L1)) +
BF(0,2) =4 Pr(0,0,0) x exp(-r(1,0)) + y x exp(=r(0,0)) (15)
Pr(0,0,-1) x exp(-r(1,-1))
Base on the assumption of independence between the branching probability of risk free tree
and martingale probability of default risk, the calculation process for pricing the risky bond is
as equation (16).
Pr(0,0,1)x[1- u(0)]x v (1,2; D) + Pr(0,0,1)x u(0) x vg (1,2; D) +
v(0,2; D) =100x Pr(0,0,0)><[1-u(0)]><uC (1,2; D) +Pr(0,0,1)x u(0)xve (1,2; D) + ¢ xexp(-r(0,0)) (16)
Pr(0,0,-1)x [1-u(0)]x vy (1,2; D) +Pr(0,0,-1)x u(0) x v, (1,2; D)
Use equation (11), (14), (15), equation (16) can be in short as

0(0,2;D) = BF(0,2)x { u(0)x & + [1- u(0)|x {1 - @]+ u(@)s}} (17)
Transform equation (17), the first year default probability is
|, |v(02,D) ~ ~
u(1) = {1 {BF(O,Z) u(0)5} /[1 u(O)]} /(1 ) (18)

By similar methodology, we could derive other default probabilities, for example, the
expected default probability at second year is

,u(2)—{1 HBF(O,?’) u(0)5} /[1 u(0)s] u(1)5} ﬁl u(l)]} /(1 5) (19)

As soon as whole period default probabilities have been derived, synchronize each possible
future spot rate with above martingale default process, the pattern of combined risky tree is
completed as Figure 3. If default happens, which denotes as the symbol of D on the lattice,
we only discount default value by default-free interest rate since we have consider credit risk
in the term structure. However, if default doesn’t happen yet, denotes as the symbol of D,
time-t discount value is the weighted average of both payments of go default and not being

default at time tT+1,



Figure 3 Risky Interest Rate Tree

Rolling back the payment at maturity we can derive the present value of risky zero bond. The
specific computation process for each status value on the interest rate lattice is as followings:
If default does not happen yet, then bond value is the weighted average of default and
non-default payments.

(i, T,Di) = Z Pr(i, j,k) x @—u(i)) x 0(i +1, T, De.1) x exp(~r i, j) x At)
- (20)
- Z Pr(i, j,k)xu(i)xo(i +1, T, D,,,) xexp(-r(i, j) x At)

If default has happened then bond value is only discount value of default payment.

n
o(i,T,D,) = > Pr(i, j,k)xv(i +1,T, D, )xexp(-r(i, j) x At) (21)
j=—n
The advantage of the combined risky tree is that we can use lattice process to value interest
rate derivatives, such as cap and bond option, where underlying asset subject to credit risk.
Furthermore, the risky lattice can be easily extended to a two-factor term structure including
short rate and long rate, which is discussed in section C.

2.3 Risky Three-Dimension Term Structure

The idea of risky term structure could be extended for allowing one more factor of interest
rate, which embraces future volatility patterns. Hull and White (1994) proposed a two-factor
formulation of their Extended Vasicek model, per se, which is a Morkov model and could be
implemented as a combining tree. The joint dynamics of short rate, r, and long rate, u, are
of the form:

dr = [O(t) + u(t) —ar(t) [dt + o,dz, (22)
du = —budt + 0,0z, (23)
Assuming a=b. The equation is similar to Hull and White (1994) one-factor model. In
addition to @4(t) there is a stochastic function of u(t) in the drift of r, which takes
long-run interest rate trend into consideration for a reasonable description of real interest rate
market. The reversion level, u(t), also reverts to a level of zero at speed of b. Let a=b,

E(dz,,dz,) = pdt and u(0)=0.
This model allows a close-form solution for pricing discount bond. In order to eliminate the
dependence of the first stochastic variable on the second, u, the new variable y is
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introduced as

y=r L (24)
b-a
So that the new stochastic differential equations become
dy =[o(t) —ayfdt + & dz, (25)
du =-budt + o,dz, (26)
with aj and correlation between u and y are given by
2
5 —ol+ o, - 2p0,0, 27)
(b—a) b-a
o, +o,/(b—a
E[dzz,dz3]: PO, u/( ) (28)

Oy

Where dz, as dz, and dz, is a Wiener process. Each of short rate and long could be
mapped as a one-factor trinomial interest rate tree separately. Combine y -tree and u -tree on
the assumption of zero correlation. The result is a three-dimensional tree where nine branches
emanate from each status and each branching probability from [y(i, j,),u(i, j,)] to the nine

reachable nodes is the product of the unconditional probabilities associated with the trinomial
tree of y and the trinomial tree of u. Thatis

Pr(r(i, j,, J,)) = Pr(y(i, J,)) *Pr(u(i, j,))

(29)
The short rate, r, is given by the initial tree to be
wps : j,Au
r (I’inju):JyAy_b_a (30)
r(i, jy, J.) =1 (0, iy, j,) +alpha(i) (31)
Wy e y

u(1,0) y(1,1)

u(1,1) u(1,0) y(1,-1)
u(1,-1)
u |l | ]
1 0 -1

Figure 4 Hull and White Two-Factor Interest Rate Tree

Where the computations of alpha(t) are as following recursively equation.
. i A
Pia =2, 2.Qu exp{— (alpha(t) +j,Ay - Ju %_ a)At} (32)
iy
Iog ij Zju Qtvjyvju exp{— (ijy o juAu/(b - a))At}_ Iog Pt+1

alpha(t) = N

(33)



mejy’ju = z Z Qw_ - *Pr(i, j,, j,)x exp{— {alpha(t) + jy*Ay _ J% B a)}At} (34)
I T

Let @lPha(0) =r(0) {5 match initial term structure. The number of nodes of three-dimension

interest tree is the product of two estimations of y tree and u tree. Define Q as the

iy du
present value of a security that pays off $1 when y =, + j,Ay and u= j,Au attime 1At
or zero otherwise. Q,,, = 1. As Hull(1994) shows, see equation (30), the interest rate
pattern could be derived after adding each time apha(t) to original three-dimension tree,

*

r.
Note that the risk-free interest rate tree is independent with default process. Therefore, it is
easy to extend a multi-factor model. The method for combining both of two-factor interest
rate tree and default process is similarly as one-factor approach but it is more complicated.
The risk-free-two-factor term structure can be derived from equation (29) to (34). However,
given constant recovery rate, yearly default probability, u(i), is the same with one-factor
risky interest rate tree since the ratio of risk-free bond and corporate bond is fixed. Consider
two-factor interest rate model and default process, the calculation approach for risky bond
value is as followings:

If default does not happen at time t, denotes as D¢, then the time t value of risky bond
includes both of default and non-default payments from time t+1.
U(i,T, Dt)

=2 iPr(i, iysdo Ky k) x@=u(@)) x 0@ +1T, D) xexp(=r(i, j,, j,) x At)

jy:_ny Ju=—ny

+ Z Zu:Pr(i, Jys Juoky k) xu()xo(i+1T,D, ) xexp(-r(i, j,, j,) x At)
Jy==Ny Juy="Ny (35)
If default has happened at time U, denotes as D, , then it remains default next pericu..

v(i,T,D,) = Zy: Zu:Pr(i. Iy ju,ky,ku)xv(i +1,T,D,,,)xexp(-r(i, Jyr Ju) x A) (36)
jy=—ny j,=n,

Where n,(n,) is the max j, (max j,) and k, (k,) is the next-period state of j (j,). Note

that credit-risk factor has been considered in the risky tree, the discount factors are risk free
interest rates derived from Hull-White model. We use computer programming to deal with
these computations.

3. Results and Discussion

This section discusses the application of defaultable tree on interest rate derivatives and
presents two examples of interest rate options, put option of coupon bond and cap. By the
example process, we have a thorough understanding about the approach of tree combination
model. Furthermore, we examine the variation of option values in different pairs of
parameters and discuss our pricing result. The data of risk-free bond is derived from
government bond prices and the risky bond is derived from Far-East-Textile corporate bond.
By Hull and White (1994), given a=0.1, ¢=0.01and dt =1, the risk free interest rate tree is
derived as specified in Table 1 and Figure 5. Note that the pattern of Alpha is derived from
zero-coupon bond and matches original term structure. In addition, the nodes at time t are
the possible movement from time t—1 node. The number of j at each side of Alpha

pattern equals 2. The value of node- j at time t is time (t+1) expect discount value of
nodes j+1. All of nodes in Figure 5 are possible future interest rats. In addition, the central
9



line, designated as Alpha Path, matches the initial yield curve and the volatility and

convergence of the tree are
interest rate, © .

determined by both sizes of mean reversion, @, and volatility of

Table 1 Zero-Coupon Bond Price

M aturity / Risk-Free Zero Rate Forward Rate Alpha
Year Discount Bond (%) (%) (%)
0 1.0000 0.0610 0.0610 0.0637
1 0.9383 0.0637 0.0654 0.0651
2 0.8791 0.0644 0.0655 0.0658
3 0.8233 0.0648 0.0659 0.0663
4 0.7707 0.0651 0.0655 0.0651
5 0.7225 0.0650 0.0640 0.0640
6 0.6783 0.0647 0.0635 0.0650
7 0.6362 0.0646 0.0657 0.0691
8 0.5945 0.0650 0.0710 0.0764
9 0.5516 0.0661 0.0764 0.0799
Interest Rate a =0.1 o =0.01
012
0.11 i— - - -
0.1 i— - - - - - = -
0.00 - -
0.08 E_ - ] L - m [ ] - Alpha Path
i—-—‘-_-_‘-—-———ﬂ/-/./-\- (=0)
007
o,oe':— - - -
0.05 ;— ™ [ ] L [ ] m - - - ™ -
0.04 F -
0.03 - - - L] -
0.02 i—
0.01
E 1 1 1 1 J Year
2 4 6 8 10
Interest Rate a =0.1 o0=0.005
012
0.11f
0.1F
E -
0.09 - -
E - ™ - [ ] - =
0.08 - - ] L] - Alpha Path
oo7rf- ™ ™ : L | ‘I/-/:/:\: (G=0)
0.0 _ - 7 m - m
T E - L] - - - ] -
0.05F = = g . o= "
0.04 |-
0.03F
0.02
0.01fF
E . b by by 1 1 Year
o 2 4 6 8 10
Figure 5 Hull and White One-Factor Risk Free Pattern

As illustration in Figure 5,

we can see that higher volatility and less mean reversion speed

would enlarge the scope of interest rate level and raise the value of interest derivatives but
keeping bond value unchanged. The advantage of interest rate lattice is that favorable for
discrete-time calculation and the pattern of term structure could be obtained.
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Table 2 Yearly Interest Rates

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9
0.0987 00993 00981 00970 00980 0.1020 0.1094 0.1128

0.0816  0.0823 0.0828 0.0816 00805 0.0815 0.085 0.0929 0.0963
0.0637 0.0651 00658 00663 00651 00640 00650 00691 00764 0.0799
0.0487 00493 00498 00487 00475 00485 0.0526 0.0599 0.0634

00328 00334 00322 00310 00320 0.0361 0.0434 0.0469

Parameters: a =0.1, o =001, bond maturity =10 years

Table 3 Default Probabilities for Risky Corporate Bond

Maturity /  Risk-free Discount Corporate Bond Value with Default Probability

year Bond Similar Credit Class u( i)
0 1.0000 99.5463 0.0124
1 0.9383 93.0169 0.0319
2 0.8791 85.2143 0.0392
3 0.8233 71.6417 0.0328
4 0.7707 71.0558 0.0349
5 0.7225 65.0404 0.0493
6 0.6783 59.0501 0.0376
7 0.6362 54.0254 0.0441
8 0.5945 49.0452 0.0414
9 0.5516 44.3058 0.0722

Other parameter: o =0.3

0.20
=y 0.15 —&— payoff 0.1
% ’ —&— payoff 0.2
kS —&— payoff 0.3
~ 0.10
= —+—payoff 0.4
§ _| —%—payoff 0.5

—@&— payoff 0.6

0 1 2 3 4 5 6 7 8 9 Maturity

Figure 6 Credit Risk Curve

The simple branching nodes of interest rates are in Table 2. Using these data we can price
risk-free financial assets or the value of embedded options. Nevertheless, consider the
counterparty-default risk we further extend to credit process. By the Jarrow-Turnbull model,
we could see that default probability is a function of the ratio of Treasury bond to risky bond
prices. Using both data of risk free zero bond and risky zero bond, we could compute yearly
default probabilities as Table 3.

Since the value of risk free bond is higher than risky bond each year that implies there is
credit risk embedded in the corporate bond, in particularly, the payment at maturity is
uncertain, investor likely only receive a fraction of principle of the bond. Each year, the bond
has different default probability those expresses a certain credit status of the bond. If default
does not happen in the previous time, there is still a default risk for the future payment.
Moreover, as Figure 6 shows that longer-term risky corporate bonds are more uncertain than
short-term risky bond, thus the default probability rises as the maturity of risky bond increases.
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Since each time default risk is not the same, the lattice of risk term structure provides full
credit information and is a better implementation for pricing interest rate derivatives subject
to credit risk. The present value of derivatives is obtained by rolling backward from the
maturity to time zero step by step. Using above information, two examples of interest
derivatives are represented as follows.

3.1Put Option Example
A put option matures at fifth year with strike price of 0.55 (unit of one dollar). The underlying
asset of the put is the risky corporate bond we have mentioned above. Assume a bondholder
buys a put on the risky bond for hedging against value decline of the bond in the expectation
of rising interest rate in market. With the put option, conservative bondholder places a
limitation of minimum revenue, thus if the bond price is less than the strike price, the hedger
can receive the interest rate spread.

See Table 4, fifth-year values of non-default and default bonds are specified as Vis and

v;p respectively, and nearby column is the payoff of the European put option. With the risky

interest rate tree we can derive several values of risky bond, including default and non-default
status at fifth-year.

Table 4 Bond Price and the Payoff of Put Option at Fifth Year

susor oo FE T LG
Uy 5 0.0324
V2,0 0.3661
1o 0
Vip 0.3532
Vo5 0
Voo 0.3393
0
U_ip 0.3244
Vb 0
Voo 0.3085

Y5 is non-default value of bond at the interest rate level of R, ;
on the contrary, v; isvalue of bond where default has happened.
The recover rate of the bond=0.3 , strike price =0.55, mean
reversion=0.1, and volitility=0.01.

With put privilege bondholder could receive payment of interest spread from financial
institution to assure the minimum profit of bond investment. The payoff of put option equals
as:

Payoff of Put = max(strike price -v; s, 0) (37)
Rolling back the risky tree we could derive present value of put option. The result and the
impact of other parameter inputs for option value are as follows.
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Table 5 Simulation of Put Value for Different Inputs of a and o
mean reversion

volitility
0.1 0.2 0.3 0.4 0.5
0.01 0.0365 0.0353 0.0348 0.0348 0.0348
0.02 0.0451 0.0399 0.0365 0.0348 0.0348
0.03 0.0533 0.0457 0.0421 0.0386 0.0366
0.04 0.0607 0.0511 0.0473 0.0423 0.0394
0.05 0.0726 0.0559 0.0522 0.0459 0.0421

Put Value

0.01

Figure 7 Graph for Differéntlnputs of @ and o

Table 5 shows simulation of put value among different pairs of parameters of a and o . The
graph in Figure 7 implies that the slower mean reversion and higher volatility, the more
valuable put option. Although mean reversion, deviation of interest and default probabilities
determine the pattern of the lattice of risky interest rate. However, strike price and the
recovery payoff are also decisive factors of cash flow and could be made changes though
negotiation with option writers. Thus, we simulate both of them next.

Table 6 Simulation of Different Inputs of Strike and Recovery Rate
recovery rate

strike price
0.1 0.2 0.3 04 0.5 0.6 0.7
03 0.0184 0.0143 0.0001 0.0024 0.0000 0.0000 0.0000
0.35 0.0224 0.0188 0.0142 0.0081 0.0012 0.0000 0.0000
04 0.0264 0.0233 0.019%4 0.0141 0.0068 0.0007 0.0000
045 0.0304 0.0278 0.0245 0.0201 0.0140 0.0054 0.0004
0.5 0.0344 0.0323 0.0297 0.0262 0.0212 0.0138 0.0047
0.55 0.0400 0.0385 0.0365 0.0340 0.0307 0.0261 0.0187
0.6 0.0532 0.0526 0.0519 0.0510 0.0497 0.0478 0.0445
0.65 0.0805 0.0804 0.0802 0.079 0.079% 0.0790 0.0784
0.7 0.1145 0.1145 0.1145 0.1145 0.1145 0.1145 0.1145
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Put Value

0.2

0.1

0.25
0.5

Recovery

Ll
— 0.75 Rate

TR I |
0.25 0.5 0.75
Strike Price

Figure 8 Graph for Different Inputs of Strike and Recovery Rate

Table 6 and Figure 8 show the impact of different inputs of strike price and recovery rate on
put value. Recovery rate has little influence on put value. Even though the guarantee of higher
recovery rate assures higher refund payment, however it also brings up higher imbedded
default probabilities among similar credit-risk bonds, as the illustration in Figure 6. In
equilibrium, the value of risky bond doesn’t follow the change of recovery rate.

Table 7 Two Factor Results

a
1.0000 2.0000 3.0000 4.0000 5.0000
0.1 0.0407 0.0356 0.0348 0.0348 0.0348
0.2 0.0375 0.0350 0.0348 0.0348 0.0348
0.3 0.0357 0.0348 0.0348 0.0348 0.0348
0.4 0.0353 0.0348 0.0348 0.0348 0.0348
0.5 0.0351 0.0348 0.0348 0.0348 0.0348

Put Value

0.4

b 02 2 a

Figure 9 Graph for two-factor simulation

On the other hand, strike price is an important factor of pricing put value. The maturity payoff
of the put is that risky bond value deducted from strike price, hence higher strike price would
increases put value.

Throughout the simulation of two-factor risky tree we could obtain put option value in Table 7.
Since two-factor model considers the impact of mean reversion and volatility on both of short
rate and long rate simultaneously, it provides a richer pattern of term structure movements and
accurate valuation of interest rate derivatives than one-factor model. As Figure 9 shows, the
lower mean reversion speed of interest rate, the higher value of put option. On the other hand,
stronger mean reversion, which goes along with a more convergent tree, depresses the value
of long-dated options. Moreover, volatilities of short and long rate also positively contribute
to the value of put option, which is the same with the reference of Black-Scholes model. The
following example is a simulation of a cap and it illustrates the application of interest rate tree
for calculation duration cash flows of interest payment.
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3.2Cap Example

A company issues a floating-rate coupon bond for which the interest rate is reset every year.
The reset rate depends on prevailing one-year spot interest rate plus 3 bp. However, a
contingent claim of 6% cap rate has also been embedded in the contract during total life of the
bond for limiting the risk of increasing interest cost. Upon the cap rate, when floating interest
rate is greater than cap rate, interest payment investors receive is only cap rate applied to the
principal of contract and investor can’t receive the benefit of advanced interest rate. On the
other hand, if future interest rate is less than cap rate, the company still pays the interest base
on floating interest rate at the end of year.

| | | | | |
I I I I I I
rest 1 rest 2 rest 3 rest 9
payoff 1 payoff2 payoff3 \ payoff 9

Figure 10 Payment and Reset Dates

In terms of hedging capital cost, the cap ensures that the effective interest rate paid on the
debt is capped at a fixed rate. In this case, see Figure 10, with ten-year corporate there are a
total of 9 reset dates (at times 1, 2, ..., 9 years) and 9 payoffs from the caps (at times 2, 3, ...,
10 years). The risk-free interest rate tree we have derived prior section could be employed as
future spot rate. Therefore, a cap, as seen as a combination of caplets, is a series interest-rate

call options. The time-t value of a caplet, which leads to a payoff at time t+1, is given by:
Lz

——max(R, — X, 0) , if timet+1 does not default

caplet(t) value=1+R ¢ (38)

0 , if timet +1default

Where L is the principal of the option and 7 is the tenor, a period between reset, which we
assume is one year. The sign R, istime-t spot rate, and X is the cap rate. The cash flow

of risky bond includes both of payments of floating, but limited, interest rate and the payment
of risky maturity principle. In addition, yearly interest rate payment is not affected by the
credit risk which means bond holders still receive interest payment in the circumstance of
default. Moreover, the cap is identical to that investor sells an interest rate call option to the
bond issuer; therefore we need deduct value of embedded option price from the value of risky
bond and derived net value of bond. Table 8 and Figure 11 show the simulation of cap value,
which depends on the size of volatility of interest rate and strike price of option. As we
mention above, with less mean reversion and larger volatility there is a larger scope of interest
tree, therefore, the value of cap is higher.
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Table 8 Cap Value in One-Factor Model

cape volatility

rate 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0.02 0.0660 0.0668 0.0671 0.0678 0.0681 0.0682 0.0703
0.03 0.0572 0.0575 0.0578 0.0582 0.0588 0.0610 0.0632
0.04 0.0484 0.0484 0.0491 0.0494 0.0516 0.0538 0.0560
0.05 0.0353 0.0376 0.0399 0.0422 0.0444 0.0466 0.0489
0.06 0.0280 0.0303 0.0326 0.0349 0.0372 0.0395 0.0417
0.07 0.0060 0.0083 0.0105 0.0126 0.0146 0.0167 0.0186
0.08 0.0046 0.0068 0.0091 0.0112 0.0133 0.0153 0.0173
0.09 0.0000 0.0054 0.0077 0.0098 0.0120 0.0140 0.0160
0.1 0.0000 0.0000 0.0063 0.0085 0.0106 0.0127 0.0147
0.11 0.0000 0.0000 0.0049 0.0071 0.0093 0.0114 0.0134
0.12 0.0000 0.0000 0.0000 0.0057 0.0079 0.0100 0.0121
0.13 0.0000 0.0000 0.0000 0.0044 0.0066 0.0087 0.0108
0.14 0.0000 0.0000 0.0000 0.0000 0.0052 0.0074 0.0095
0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0061 0.0082

Other parameters: a =0.1, o¢=0.01, 6=0.3

Meanwhile, the bankruptcy process is specified exogenously then the data is observable in the
trading market. Upon determining the estimations of mean reversion and volatility of interest

Cap Value

01

0.08

0.06

0.04

0.02

/

L—
—
[ —
L—
—

0.15

Figure 11 Cap on floating coupon bond

4.Conclusion

When counter party credit risk exists, default factor need to be considered in pricing
process. This article uses two Markov processes, Hull-White model and Jarrow-Turnbull
model, to build a combining risky interest rate tree for pricing risky interest rate derivatives.

cap rate

rate and acquiring default probabilities, the risky term structure could be accomplished. The

risky tree, as a discrete combining lattice, not only fits the original term structure but also
embraces the credit information of underlying assets. Upon satisfying both of advantages of

HW model and JT model, it provides a useful method for pricing credit sensitive bonds and
spread-adjusted contracts, such as interest rate options or swaps. The risky term structure

could be widely extended to multi-factor interest derivatives, for example, mortgage or

convertible bond.
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In our simulation, we can see that mean reversion, interest rate volatility, and strike price
(or cap rate) are important factors of valuing interest derivatives. Mean reversion and
volatility determine the scope of interest term structure, on the other hand, strike price
determine cash flow upon comparing floating interest rate level or the risky bond value.
Notice that the change of recovery rate doesn’t affect option value, neither put nor cap, since
recovery rate is a tradeoff with default probability. Under similar credit risk, higher recovery
rate just brings up higher default rate.

Since spot rate is the only endogenous factor of the tree, the lattice model may bring up
some drawbacks of negative branching probability and negative martingale probability of
default, especially in condition of excessive volatility of interest rate and irregular price
movement of zero bond and corporate bond. For example, if the value of risky corporate bond
is greater than government bond, the negative default probability may occur. Nevertheless, it
doesn’t affect the efficiency of pricing work.
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