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ABSTRACT  
Concern with increasing bankruptcy problems in practice, the credit risk of counterparty 

default has been paid attention for pricing financial assets. This article bases on two Markov 
processes, Hull-White model and Jarrow-Turnbull model, to develop a risky term structure of 
interest rate. In addition, we also extend HW two-factor model to build a richer pattern of 
risky term structure. The risky trees not only fit the original term structure but also embrace 
credit information of underlying assets. Throughout lattice calculation we can derive future 
spot rate and the parameters of bankruptcy processes, which can be estimated from observable 
data. Therefore, it is a useful method for pricing credit sensitive bonds and spread-adjusted 
contracts, such as options of interest rate, cap, and swaps. The applications include two 
simulations of interest rate derivatives, put option and cap. With the numerical analysis we 
infer the impact of different parameter inputs on option value. 
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1.  Introduction 
The transactions of interest-rate-contingent claims such as caps, swaptions and bond 

options have become popular these years. In the previous decades, many faculties were 
dedicated to the term structure of default-free interest rate for pricing interest-rate derivatives 
that are assumed no default risk of counter party. In the real world, however, many options 
and financial assets contain option-like payoffs sold by firms with limited assets or they are 
traded on OTC without insurance. For such situation, the no-default assumption is far less 
defensible. Concern with increasingly bankruptcy problems in practice, recently academic 
literature has taken both early default and interest rate risk into account. 
 
1.1 Credit Risk 
    Merton (1974) brought up a concept about risk structure of interest rates for pricing 
corporate liabilities. They related “risk” as the possible gains or losses to bondholders 
stemmed from the changes in the probability of default not the changes in interest rates in 
general. He pointed out, at given term structure, the price differentials among bonds are as 
results of differences in the probability of default. The model is so-called structural model, 
which focuses on the relation between default and asset value in an explicit way. However, 
Merton’s model does not generate the levels of yield spreads that observed in the market. 

Follow the Merton’s idea, more examples of imbedded options on the corporate debt 
have been proven, such as Black and Cox (1976), Ho and Singer (1982), Chance (1990), and 
Kim, Ramaswamy, and Sundaresam (1993). They took defaultable derivatives as contingent 
claims not on the financial securities themselves, but as “compound options” on the assets or 
underlying the financial securities. Nevertheless, these approaches are difficult to implement 
in practice because all of the firm’s assets are neither tradable nor observable. Moreover, all of 
the other liabilities of the firm senior to the corporate debt must first (or simultaneously) be 
valued, that brings about time-consuming computation. 
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Alternative default risk factor stems from the derivatives writer. Such an option, called 
vulnerable option, i.e., option is privately written and is not guaranteed by a third party, is 
mentioned in the article of Johnson and Stultz (1987). They proved the value of a vulnerable 
European option could fall with time to maturity, with the interest rate, and with the variance 
of the underlying asset. Also, they study how the comparative-static properties of vulnerable 
options differ from those of options without default risk. Hull and White (1995) extended 
Johnson and Stultz model to cover situations where other equal ranking claims can exit. It 
shows how the value of a vulnerable security can be related in a consistent way to the 
no-default value of the security, the values of default-free zero-coupon bonds, and the values 
of vulnerable zero-coupon bonds that would be issued by derivative writer. However, they do 
not price options on assets with credit risks nor do they analyze the hedging of vulnerable 
options. 

Jarrow and Turnbull approach (1995) presents a technique for valuing options on a term 
structure of securities subject to credit risk. This approach value defaultable coupon bonds 
and vulnerable options in the foreign currency which takes as given a stochastic term structure 
of default-free interest rates and a stochastic maturity specific credit-risk spread. The 
advantage of this article is, given risk-free term structure and risky term structure, option type 
features can be priced in an arbitrage free manner using the martingale measure technology. In 
addition, it provides a closed-form lattice result.  

Nevertheless, Jarrow and Turnbull merely used BDT default-free term structure to 
simplify the process of the evaluation. Note that BDT model is a conventional binary tree 
with probabilities of 0.5, the model lacks of sufficient information about the evolution over 
time of the term structure of volatilities and substantial inability to handle the conditions 
where the impact of a second factor could be of relevance. To enhance the effectiveness of 
pricing model, better risk-free term structure should be concerned. 
 
1.2 Risk-Free Term Structure of Interest Rate 

Ho and Lee (1986) were pioneers in the development of no-arbitrage model in the form 
of a binomial tree of discount bond prices. The model involves two parameters including the 
short-rate standard deviation and the market price of short rate. By Ho and Lee model 
zero-coupon bond and European options on zero-coupon bond can be valued analytically. 
Nevertheless, the drawbacks of the model are no mean-reversion process and it gives the user 
very little flexibility in choosing the volatility structure since all spot and forward rates have 
the same standard deviation, i.e. the average direction in which interest rates move over the 
next short period of time is always the same. 

Heath, Jarrow and Morton (1992) proposed a general approach to constructing models of 
the term structure which involves specifying the volatilities of all forward rates at all times 
and the initial values of the forward rates are chosen to be consistent with the initial term 
structure. In addition, they extended one-factor to multi-factor arbitrage-free models of the 
term structure. A multi-factor HJM model probably provides the most realistic description of 
term structure movements, however, for lattice- or finite-differences- based approaches the 
computational cost generally grows with the power of the number of factors, HJM model has 
to be implemented by using the Monte Carlo technique or a non-recombining tree. 
Intrinsically, HJM model is a non-Markov, which indicates the distribution of interest rates in 
the next period depends on the current rate and also on rates in earlier period. In that it brings 
about the HJM process cannot be mapped onto a recombining tree, thus compound or 
American options cannot be dealt with by back-wards induction using finite-difference grids 
or recombining lattices, and number of nodes at time   grows exponentially with   so that 
accurate pricing is computationally extremely time consuming. 

A significant breakthrough took place when Hull and White (1994) introduced a class of 
models, i.e. the Hull-White extended-Vasicek model, to incorporate deterministically 
mean-reverting features. They noted, in a long run, all yield curves should become reasonably 
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flat and a positive mean reversion must prevail in order to price very long caps. What is the 
comparative advantage brought about by HW approach is that allows perfect matching of an 
arbitrary initial term structure and analytically tractable. With recombining trinomial lattice, 
not only closed–form solutions could be obtained for the prices of derivatives but model 
calibration also could be carried out in an efficient way. In their companion sequel article 
(Hull, 1994), a two-factor Markov model of the term structure was proposed, which is a 
method for combining trinomial trees for two correlated variables into a single 
three-dimensional tree describing the joint evolution of the variables. 

This article applies trinomial risk-free term structure and martingale probability of 
default to build a risky term structure. Furthermore, it also extends to a three-dimensional 
term structure. 
 

2.  Material and Methods 
    This section describes the approaching steps of building risky term structure. The basis 
model is Hull-White Model for which we can build a risk-free interest rate tree and then apply 
it with Jarrow-Turnbull model. Since both models are Markov, we can derive a combining 
risky tree. The specific description is as following. 
 
2.1 Hull-White One-Factor Model 
    The obvious difference between interest rates and stock prices is that short-term interest 
rate will gradually pull back to some long-run average level. Hence the short rate should 
follow a mean-reverting process. See Figure 1, when the short rate is above (below) a 
long-term level it should experience a downward (upward) pull towards this level. The 
process of short rate proposed by Hull and White (1994) is described as: 

dzdtartdr σθ +−= ))((                                                   (1) 
or  

dzdtr
a
tadr σθ

+⎥⎦
⎤

⎢⎣
⎡ −=

)( .                                                  (2) 

Where a  and σ  are constants. The process of mean reversion is of the short rate pulled to 
a level at /)(θ  at speed of a . Superimposed upon this “pull” is a normally distributed 
stochastic term σ dz . Once a  and σ  are chosen then the entire term structure can be 
determined. Upon numerical implementation, HW model constructs a computational trinomial 
lattice as an interest-rate tree without risk. The discrete-time tree comprises mean reversion 
character and assumes the discount rates vary from node to node. And if the time step on the 
tree is Δ t , the rates on the tree are the continuously compounded Δ t - period rates. A usual 
assumption is that the Δ t -period rate, R, follows the same stochastic process as the 
instantaneous rate, r , in the corresponding continuous-time model. 
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Figure 1 The Branching and Probability in Each Region 
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The first step for constructing r-tree involves defining a new variable *r  and sets )(tθ and 
the initial value of *r equal to zero. Equation (3) is the process for *r , and its mean and the 
variance of the change in *r  are given by (4) and (5): 

rr dzdtardr σ+−= ** .                                                      (3) 
*** )1(Mx][ xedrE ta −== Δ−                                                    (4) 

aedrVar ta 2/)1(V][ 22* Δ−−== σ                                           (5) 
In addition, the space between r -values on the trinomial lattice equals V3  and the 
non-standard branching takes place at jmax±  where jmax  is the smallest integer of 
greater than M184.0 . At node *rjΔ , the up-, middle-, and down-branching probabilities are 
as following. Using recursively computation the price of zero-coupon bond at each time step, 

ti Δ+ )1( , is given by  

∑
−

ΔΔ+−=Δ+
)(

)(
]))((exp[),())1((

in

in
trjialphajiQtiP                                  (6) 

∑ ΔΔ+−−−=
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trkialphajkkiQjiQ ]))1((exp[),Pr(*),1(),(                          (7) 
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Δ
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)1(ln)exp(),(ln

)(                                (8) 

with 1)0,0( =Q  and )0()0,0( alphar ≡ . Where ),( jiQ  denotes the value today of a certain, 
without default risk, one dollar paid in state j  at time i , ),Pr( jk  is the probability of 
moving from time- i  node k  to node j  at time )1( +i . Add )(ialpha  to *r  interest rate 
tree then the final interest rate tree matches the initial term structure. Since computational 
lattices are discrete but finite, numbers of zero-coupon bonds are assumed to describe the 
default-free term structure and the short rates are also regarded as the driven factor for pricing 
interest derivatives. 
 
2.2 Jarrow-Turnbull Model 
    The above bond process for default-free debt is assumed that pricing process depends 
only on the spot interest rate. However, when we consider the credit risk embedded in the 
underlying asset, the branching probabilities of each node would not be the same. These 
so-called pseudo- probabilities need to be adjusted when default occurs. Jarrow and Turnbull 
(1995) use BDT model, which is a short-term interest rate lognormal distribution with simple 
branching probability of 0.5, to handle risky bonds.  

Instead of BDT model, we select Hull and White’s default-free term structure model as a 
better approach for applying in the JT model since it takes more consideration about 
mean-reversion and a good fit of initial term structure.  

Assume spot interest rate process and the bankruptcy process are independent under the 
pseudo-probabilities we use the observed term structures of zero-coupon bond price and risky 
corporate bond to determine the martingale probabilities of default. Let );,( tDSTtυ  is the 
time- t  value of a zero-coupon bond issued by the credit risk firm, and the symbol tDS  
denotes the default status of the contract at time t  as follows: 

⎩
⎨
⎧

≡
tD

tDDSt     timebeforeor at  occurred hasDefault ; 
            at time occurrednot  hasDefault  ;                                (9) 

If default occurs, the buyer will receive less than the promised amount, i.e. a recovery rate of 
δ  or a fraction amount of principle. For example, the risky bond’s value at the maturity is  
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Where )(u t  is time- t  martingale probability that we expect default may occur at next time 
1+t , however, it has not happened yet. Thus, there are two possible credit status, default or 

non-default, at every interest rate level of ),( jir . On the other hand, if default has occurred at 
or before time t , the risky bond still remains in default in the future and the payoff ratio of 
maturity is δ . Figure 2 shows a two-period risky interest tree, rectangular shape denotes 
default has not occurred till now and ellipse shape denotes default does occur. This tree 
simultaneously considers interest rate movement and default probabilities. This model 
assumes both risk-free process and default process are independent, where credit risk is 
embedded in the value of coupon bond. 

 
t=0 t=1 t=2

r(1,1)

r(1,1)

r(1,0)

r(1,0)

r(1,-1)

r(1,-1)

P r(0
,0

,1
)* [

1 -u
(0

)]

P r(0
, 0,1)*u

(0 )

P r(0, 0,0)* [1 -u(0)]

P r(0,0,0)*u(0 )P r(0,0,-1)* [1 -u(0)]

P r(0 ,0 ,-1)*u(0 )

1

δ

δ

1

δ

1

δ

δ

δ

[1-u(1)]

u(1)

u(1)

[1-u(1)]

u(1)

r(0,0)

B

B'

C

C '

D

D'

A
[1-u(1)]

D

D

D

D

D

D

D
 

Figure 2 Two Period Risky Debt Default Process 
 
The values of six possible statuses at time t =1 for a risky bond with maturity of two are:  

Bυ ×= 100);2,1( D [ ]{ } ))1,1(exp(-  u(1) u(1)-1 r×+ δ  

'Bυ ×=100);2,1( D )1,1(exp(  r−×δ  

Cυ ×= 100);2,1( D [ ]{ } ))0,1(exp(-  u(1) u(1)-1 r×+ δ                               (11) 

'Cυ ×=100);2,1( D ))0,1(exp(  r−×δ  

Dυ ×= 100);2,1( D [ ]{ } ))1,1(exp(-  u(1) u(1)-1 −×+ rδ  

'Dυ ×= 100);2,1( D ))1,1(exp(  −−× rδ  
The two-year risky tree is derived from combination of Hull-White trinomial tree and 

Jarow-Turnbull martingale probabilities. If the default has not occurred at time t  then the 
conditional (martingale) probability that default occurs at time 1+t  is denoted by )(u t , 
otherwise the martingale probability will be )(u1 t−  in the no-default condition. Under the 
martingale probabilities (see Jarrow and Turnbull 1995), the value of normalized prices with 
only one period zero-coupon bond is given by  

⎥
⎦

⎤
⎢
⎣

⎡
=

)(
);,(

)0(
);1,0(

tA
DStt

E
A

D tQ
t
υυ .                                                (12) 

Where )(tA  is discount factor at time t , i.e. ))0(exp()1( rA =  and 1)0( =A , and Q
tE  

denotes the time- t  conditional expected value when we are computing the expected value of 
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the option at time 1+t , using the equivalent martingale probabilities given whatever 
information is available at time t . Simply equation (11), the formula of risky bond value is 

[ ]{ }
[ ]{ })0(u)0(u1 BF(0,1)                 

)1(/)0(u)0(u1 100),1,0(
×+−×=

×+−×=
δ

δυ AD
                                   (13) 

Note that 
)(

100),0(
tA

tBF = . The martingale probability that default occurs by the end of the 

first year can be derive as 

).1(
BF(0,1)

),1,0(1)0( δυμ −⎥
⎦

⎤
⎢
⎣

⎡
−=

D                                                (14) 

 
Using long-term maturity data of asset we can extend long-run default process. Assume a 
risky corporate bond matures at second year. The present value of default-free bond with 
maturity time two, which denotes as BF(0,2) , is 

))0,0(exp(
1))exp(-r(1,-Pr(0,0,-1)
))exp(-r(1,0Pr(0,0,0)
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⎧

×
+×
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=                              (15) 

Base on the assumption of independence between the branching probability of risk free tree 
and martingale probability of default risk, the calculation process for pricing the risky bond is 
as equation (16). 
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Use equation (11), (14), (15), equation (16) can be in short as 
[ ] [ ]{ }{ }δμμδυ )1(u)1(1(0)-1 u(0) BF(0,2));2,0( +−×+××=D                     (17) 

Transform equation (17), the first year default probability is  

 [ ] )1()0(u1)0(u
BF(0,2)

),2,0(1)1( δδυμ −
⎪⎭

⎪
⎬
⎫

⎪⎩
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D                              (18) 

By similar methodology, we could derive other default probabilities, for example, the 
expected default probability at second year is  

[ ] [ ] )1(u(1)-1)1(u   )0(u1)0(u
BF(0,3)

);3,0( 1)2( δδδδυμ −
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⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−⎥
⎦

⎤
⎢
⎣

⎡
−−=

D           (19) 

As soon as whole period default probabilities have been derived, synchronize each possible 
future spot rate with above martingale default process, the pattern of combined risky tree is 
completed as Figure 3. If default happens, which denotes as the symbol of D  on the lattice, 
we only discount default value by default-free interest rate since we have consider credit risk 
in the term structure. However, if default doesn’t happen yet, denotes as the symbol of D , 
time- t  discount value is the weighted average of both payments of go default and not being 
default at time 1+t . 
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Figure 3  Risky Interest Rate Tree 

 
Rolling back the payment at maturity we can derive the present value of risky zero bond. The 
specific computation process for each status value on the interest rate lattice is as followings: 
If default does not happen yet, then bond value is the weighted average of default and 
non-default payments. 
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If default has happened then bond value is only discount value of default payment. 

( )∑
−=

+ Δ×−×+×=
n

nj
tt tjirDTikjiDTi )),(exp(,,1),,Pr(),,( 1υυ                       (21) 

The advantage of the combined risky tree is that we can use lattice process to value interest 
rate derivatives, such as cap and bond option, where underlying asset subject to credit risk. 
Furthermore, the risky lattice can be easily extended to a two-factor term structure including 
short rate and long rate, which is discussed in section C. 
 
2.3  Risky Three-Dimension Term Structure 
The idea of risky term structure could be extended for allowing one more factor of interest 
rate, which embraces future volatility patterns. Hull and White (1994) proposed a two-factor 
formulation of their Extended Vasicek model, per se, which is a Morkov model and could be 
implemented as a combining tree. The joint dynamics of short rate, r , and long rate, u , are 
of the form: 

[ ] 11)()()( dzdttartutdr σθ +−+=                                            (22) 

22dzbudtdu σ+−=                                                        (23) 
Assuming ba ≠ . The equation is similar to Hull and White (1994) one-factor model. In 
addition to )(tθ  there is a stochastic function of )(tu  in the drift of r , which takes 
long-run interest rate trend into consideration for a reasonable description of real interest rate 
market. The reversion level, )(tu , also reverts to a level of zero at speed of b. Let ba ≠ , 

dtdzdzE ρ=),( 21  and 0)0( =u .  
This model allows a close-form solution for pricing discount bond. In order to eliminate the 
dependence of the first stochastic variable on the second, u , the new variable y  is 
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introduced as  

ab
ury
−

+=                                                              (24) 

So that the new stochastic differential equations become 
[ ] yy dzdtaytdy σθ +−= )(                                                  (25) 

uu dzbudtdu σ+−=                                                        (26) 
with 2

yσ  and correlation between u  and y  are given by 
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Where ydz  as rdz  and 2dz  is a Wiener process. Each of short rate and long could be 
mapped as a one-factor trinomial interest rate tree separately. Combine y -tree and u -tree on 
the assumption of zero correlation. The result is a three-dimensional tree where nine branches 
emanate from each status and each branching probability from )],(),,([ uy jiujiy  to the nine 
reachable nodes is the product of the unconditional probabilities associated with the trinomial 
tree of y  and the trinomial tree of u . That is 

)),(Pr(*)),(Pr()),,(Pr( uyuy jiujiyjjir =                                     (29) 
The short rate, r , is given by the initial tree to be 
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Figure 4 Hull and White Two-Factor Interest Rate Tree 

 
Where the computations of )(talpha  are as following recursively equation. 
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Let )0()0( ralpha =  to match initial term structure. The number of nodes of three-dimension 
interest tree is the product of two estimations of y  tree and u  tree. Define 

uy jji ,,Q  as the 

present value of a security that pays off $1 when yjy yi Δ+= α  and uju uΔ=  at time tiΔ  
or zero otherwise. 0,0,0Q = 1. As Hull(1994) shows, see equation (30), the interest rate 
pattern could be derived after adding each time )(tapha  to original three-dimension tree, 

*r .  
Note that the risk-free interest rate tree is independent with default process. Therefore, it is 
easy to extend a multi-factor model. The method for combining both of two-factor interest 
rate tree and default process is similarly as one-factor approach but it is more complicated. 
The risk-free-two-factor term structure can be derived from equation (29) to (34). However, 
given constant recovery rate, yearly default probability, )u(i , is the same with one-factor 
risky interest rate tree since the ratio of risk-free bond and corporate bond is fixed. Consider 
two-factor interest rate model and default process, the calculation approach for risky bond 
value is as followings: 
If default does not happen at time t , denotes as tD , then the time t  value of risky bond 
includes both of default and non-default payments from time 1+t . 
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If default has happened at time t , denotes as tD , then it remains default next periods. 

( )∑∑
−=

+
−=

Δ×−×+×=
u

uu

y

yy

n

nj
uytuyuy

n

nj
t tjjirDTikkjjiDTi )),,(exp(,,1),,,,Pr(),,( 1υυ        (36) 

Where yn ( un ) is the max yj (max uj ) and yk ( )uk  is the next-period state of ( )uy jj . Note 
that credit-risk factor has been considered in the risky tree, the discount factors are risk free 
interest rates derived from Hull-White model. We use computer programming to deal with 
these computations. 
 

3.  Results and Discussion 
    This section discusses the application of defaultable tree on interest rate derivatives and 
presents two examples of interest rate options, put option of coupon bond and cap. By the 
example process, we have a thorough understanding about the approach of tree combination 
model. Furthermore, we examine the variation of option values in different pairs of 
parameters and discuss our pricing result. The data of risk-free bond is derived from 
government bond prices and the risky bond is derived from Far-East-Textile corporate bond. 
By Hull and White (1994), given a =0.1, σ =0.01 and dt =1, the risk free interest rate tree is 
derived as specified in Table 1 and Figure 5. Note that the pattern of Alpha is derived from 
zero-coupon bond and matches original term structure. In addition, the nodes at time t  are 
the possible movement from time 1−t  node. The number of j  at each side of Alpha 
pattern equals 2. The value of node- j  at time t  is time )1( +t  expect discount value of 
nodes 1±j . All of nodes in Figure 5 are possible future interest rats. In addition, the central 

(35)
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line, designated as Alpha Path, matches the initial yield curve and the volatility and 
convergence of the tree are determined by both sizes of mean reversion, a , and volatility of 
interest rate, σ . 

 
Table 1 Zero-Coupon Bond Price 

0 1 .0 0 0 0 0 .0 6 1 0 0 .0 6 1 0 0 .0 6 3 7

1 0 .9 3 8 3 0 .0 6 3 7 0 .0 6 5 4 0 .0 6 5 1

2 0 .8 7 9 1 0 .0 6 4 4 0 .0 6 5 5 0 .0 6 5 8

3 0 .8 2 3 3 0 .0 6 4 8 0 .0 6 5 9 0 .0 6 6 3

4 0 .7 7 0 7 0 .0 6 5 1 0 .0 6 5 5 0 .0 6 5 1

5 0 .7 2 2 5 0 .0 6 5 0 0 .0 6 4 0 0 .0 6 4 0

6 0 .6 7 8 3 0 .0 6 4 7 0 .0 6 3 5 0 .0 6 5 0

7 0 .6 3 6 2 0 .0 6 4 6 0 .0 6 5 7 0 .0 6 9 1

8 0 .5 9 4 5 0 .0 6 5 0 0 .0 7 1 0 0 .0 7 6 4

9 0 .5 5 1 6 0 .0 6 6 1 0 .0 7 6 4 0 .0 7 9 9

A lp h a
(% )

M a t u r it y   /
Y e a r

R isk -F re e
D isc o u n t  B o n d

 Z e ro  R a te
(% )

F o rw a rd  R a te
(% )
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Figure 5  Hull and White One-Factor Risk Free Pattern 

 
As illustration in Figure 5, we can see that higher volatility and less mean reversion speed 
would enlarge the scope of interest rate level and raise the value of interest derivatives but 
keeping bond value unchanged. The advantage of interest rate lattice is that favorable for 
discrete-time calculation and the pattern of term structure could be obtained. 
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Table 2 Yearly Interest Rates 

0.0987 0.0993 0.0981 0.0970 0.0980 0.1020 0.1094 0.1128

0.0816 0.0823 0.0828 0.0816 0.0805 0.0815 0.0856 0.0929 0.0963

0.0637 0.0651 0.0658 0.0663 0.0651 0.0640 0.0650 0.0691 0.0764 0.0799

0.0487 0.0493 0.0498 0.0487 0.0475 0.0485 0.0526 0.0599 0.0634

0.0328 0.0334 0.0322 0.0310 0.0320 0.0361 0.0434 0.0469

t = 0 t = 9t = 8t = 7t = 6t = 5t = 4t = 3t = 2t = 1

Parameters:      = 0.1,        = 0.01, bond maturity =10 yearsa σ

 
 

Table 3  Default Probabilities for Risky Corporate Bond 

0 1.0000 99.5463 0.0124

1 0.9383 93.0169 0.0319

2 0.8791 85.2143 0.0392

3 0.8233 77.6417 0.0328

4 0.7707 71.0558 0.0349

5 0.7225 65.0404 0.0493

6 0.6783 59.0501 0.0376

7 0.6362 54.0254 0.0441

8 0.5945 49.0452 0.0414

9 0.5516 44.3058 0.0722

 Corporate Bond Value with
Similar Credit Class

Maturity  /
year

Default  Probability
u(  i )

Risk-free Discount
Bond

 
Other parameter: δ =0.3 

 

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4 5 6 7 8 9 Maturity

D
ef

au
lt

 P
ro

ba
bi

li
ty payoff 0.1

payoff 0.2

payoff 0.3

payoff 0.4

payoff 0.5

payoff 0.6

 
Figure 6 Credit Risk Curve 

 
The simple branching nodes of interest rates are in Table 2. Using these data we can price 
risk-free financial assets or the value of embedded options. Nevertheless, consider the 
counterparty-default risk we further extend to credit process. By the Jarrow-Turnbull model, 
we could see that default probability is a function of the ratio of Treasury bond to risky bond 
prices. Using both data of risk free zero bond and risky zero bond, we could compute yearly 
default probabilities as Table 3. 
Since the value of risk free bond is higher than risky bond each year that implies there is 
credit risk embedded in the corporate bond, in particularly, the payment at maturity is 
uncertain, investor likely only receive a fraction of principle of the bond. Each year, the bond 
has different default probability those expresses a certain credit status of the bond. If default 
does not happen in the previous time, there is still a default risk for the future payment. 
Moreover, as Figure 6 shows that longer-term risky corporate bonds are more uncertain than 
short-term risky bond, thus the default probability rises as the maturity of risky bond increases. 
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Since each time default risk is not the same, the lattice of risk term structure provides full 
credit information and is a better implementation for pricing interest rate derivatives subject 
to credit risk. The present value of derivatives is obtained by rolling backward from the 
maturity to time zero step by step. Using above information, two examples of interest 
derivatives are represented as follows. 
 
3.1 Put Option Example 
A put option matures at fifth year with strike price of 0.55 (unit of one dollar). The underlying 
asset of the put is the risky corporate bond we have mentioned above. Assume a bondholder 
buys a put on the risky bond for hedging against value decline of the bond in the expectation 
of rising interest rate in market. With the put option, conservative bondholder places a 
limitation of minimum revenue, thus if the bond price is less than the strike price, the hedger 
can receive the interest rate spread.  
   See Table 4, fifth-year values of non-default and default bonds are specified as 

Dj,
υ  and 

Dj,υ  respectively, and nearby column is the payoff of the European put option. With the risky 
interest rate tree we can derive several values of risky bond, including default and non-default 
status at fifth-year. 

 
Table 4 Bond Price and the Payoff of Put Option at Fifth Year 

0.51761

0.67986

0.63507

0.59321

0.55411

0.18387

0.24150

0.22559

0.21072

0.19683

Payoff    of
 Put  Optionth5

Risky Bond  Value
 at          Year

0.0324

0.3661

0
0.3532

0
0.3393

0
0.3244

0

0.3085

        is non-default value of bond at the interest rate level of          ,
on the contrary,           is value of bond where default has happened.
The recover rate of the bond=0.3 , strike price =0.55, mean
reversion=0.1, and volitility=0.01.

j , iR

DS ,jυ

D ,1−υ
D ,1−υ

D ,0υ
D ,0υ
D ,1υ
D ,1υ
D ,2υ
D ,2υ

D ,2−υ
D ,2−υ

D ,jυ
D ,jυ

Status of  

 
With put privilege bondholder could receive payment of interest spread from financial 
institution to assure the minimum profit of bond investment. The payoff of put option equals 
as : 

)0  ,  - price strikemax(Put  of Payoff DS , jυ=                              (37) 
Rolling back the risky tree we could derive present value of put option. The result and the 
impact of other parameter inputs for option value are as follows. 
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Table 5  Simulation of Put Value for Different Inputs of a  and σ    
mean   reversion

0.1 0.2 0.3 0.4 0.5

0.01 0.0365 0.0353 0.0348 0.0348 0.0348

0.02 0.0451 0.0399 0.0365 0.0348 0.0348

0.03 0.0533 0.0457 0.0421 0.0386 0.0366

0.04 0.0607 0.0511 0.0473 0.0423 0.0394

0.05 0.0726 0.0559 0.0522 0.0459 0.0421

volitility

 
 
 
 

0.03

0.04

0.05

0.06

0.07

0.2

0.4

0.6

0.01
0.02

0.03
0.04

0.05

aσ

Put  Value

 
Figure 7  Graph for Different Inputs of a  and σ  

 
Table 5 shows simulation of put value among different pairs of parameters of a  and σ . The 
graph in Figure 7 implies that the slower mean reversion and higher volatility, the more 
valuable put option. Although mean reversion, deviation of interest and default probabilities 
determine the pattern of the lattice of risky interest rate. However, strike price and the 
recovery payoff are also decisive factors of cash flow and could be made changes though 
negotiation with option writers. Thus, we simulate both of them next. 

 
Table 6 Simulation of Different Inputs of Strike and Recovery Rate 

recovery   rate
0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.3 0.0184 0.0143 0.0091 0.0024 0.0000 0.0000 0.0000

0.35 0.0224 0.0188 0.0142 0.0081 0.0012 0.0000 0.0000

0.4 0.0264 0.0233 0.0194 0.0141 0.0068 0.0007 0.0000

0.45 0.0304 0.0278 0.0245 0.0201 0.0140 0.0054 0.0004

0.5 0.0344 0.0323 0.0297 0.0262 0.0212 0.0138 0.0047

0.55 0.0400 0.0385 0.0365 0.0340 0.0307 0.0261 0.0187

0.6 0.0532 0.0526 0.0519 0.0510 0.0497 0.0478 0.0445

0.65 0.0805 0.0804 0.0802 0.0799 0.0796 0.0790 0.0784

0.7 0.1145 0.1145 0.1145 0.1145 0.1145 0.1145 0.1145

strike price
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Figure 8 Graph for Different Inputs of Strike and Recovery Rate 

 
Table 6 and Figure 8 show the impact of different inputs of strike price and recovery rate on 
put value. Recovery rate has little influence on put value. Even though the guarantee of higher 
recovery rate assures higher refund payment, however it also brings up higher imbedded 
default probabilities among similar credit-risk bonds, as the illustration in Figure 6. In 
equilibrium, the value of risky bond doesn’t follow the change of recovery rate. 

 
Table 7 Two Factor Results 

a
1.0000 2.0000 3.0000 4.0000 5.0000

0.1 0.0407 0.0356 0.0348 0.0348 0.0348

0.2 0.0375 0.0350 0.0348 0.0348 0.0348

0.3 0.0357 0.0348 0.0348 0.0348 0.0348

0.4 0.0353 0.0348 0.0348 0.0348 0.0348

0.5 0.0351 0.0348 0.0348 0.0348 0.0348

b

 
 

0.034

0.036

0.038

0.04

1
2

3

4
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0.6

Put  Value

b a  
Figure 9 Graph for two-factor simulation 

 
On the other hand, strike price is an important factor of pricing put value. The maturity payoff 
of the put is that risky bond value deducted from strike price, hence higher strike price would 
increases put value. 
Throughout the simulation of two-factor risky tree we could obtain put option value in Table 7. 
Since two-factor model considers the impact of mean reversion and volatility on both of short 
rate and long rate simultaneously, it provides a richer pattern of term structure movements and 
accurate valuation of interest rate derivatives than one-factor model. As Figure 9 shows, the 
lower mean reversion speed of interest rate, the higher value of put option. On the other hand, 
stronger mean reversion, which goes along with a more convergent tree, depresses the value 
of long-dated options. Moreover, volatilities of short and long rate also positively contribute 
to the value of put option, which is the same with the reference of Black-Scholes model. The 
following example is a simulation of a cap and it illustrates the application of interest rate tree 
for calculation duration cash flows of interest payment. 
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3.2 Cap Example 
A company issues a floating-rate coupon bond for which the interest rate is reset every year. 
The reset rate depends on prevailing one-year spot interest rate plus 3 bp. However, a 
contingent claim of 6% cap rate has also been embedded in the contract during total life of the 
bond for limiting the risk of increasing interest cost. Upon the cap rate, when floating interest 
rate is greater than cap rate, interest payment investors receive is only cap rate applied to the 
principal of contract and investor can’t receive the benefit of advanced interest rate. On the 
other hand, if future interest rate is less than cap rate, the company still pays the interest base 
on floating interest rate at the end of year. 

 
 

0            1           2             3         .    .    .

rest 1 rest 9rest 2

payoff 1 payoff 9payoff 2 payoff 3

rest 3

9           10

.   .   .

time

 
Figure 10 Payment and Reset Dates 

 
In terms of hedging capital cost, the cap ensures that the effective interest rate paid on the 
debt is capped at a fixed rate. In this case, see Figure 10, with ten-year corporate there are a 
total of 9 reset dates (at times 1, 2, …, 9 years) and 9 payoffs from the caps (at times 2, 3, …, 
10 years). The risk-free interest rate tree we have derived prior section could be employed as 
future spot rate. Therefore, a cap, as seen as a combination of caplets, is a series interest-rate 
call options. The time- t  value of a caplet, which leads to a payoff at time 1+t , is given by: 

⎪⎩

⎪
⎨
⎧

+

+−
+=

            default    1  timeif  ,0

default not  does  1  timeif  ,)0  , max(
1 value)(

t

tXR
R

L
tcaplet t

tτ
τ

           (38) 

Where L  is the principal of the option and τ  is the tenor, a period between reset, which we 
assume is one year. The sign tR  is time- t  spot rate, and X  is the cap rate. The cash flow 
of risky bond includes both of payments of floating, but limited, interest rate and the payment 
of risky maturity principle. In addition, yearly interest rate payment is not affected by the 
credit risk which means bond holders still receive interest payment in the circumstance of 
default. Moreover, the cap is identical to that investor sells an interest rate call option to the 
bond issuer; therefore we need deduct value of embedded option price from the value of risky 
bond and derived net value of bond. Table 8 and Figure 11 show the simulation of cap value, 
which depends on the size of volatility of interest rate and strike price of option. As we 
mention above, with less mean reversion and larger volatility there is a larger scope of interest 
tree, therefore, the value of cap is higher.  
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Table 8 Cap Value in One-Factor Model 
volatility 

0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.02 0.0660 0.0668 0.0671 0.0678 0.0681 0.0682 0.0703

0.03 0.0572 0.0575 0.0578 0.0582 0.0588 0.0610 0.0632

0.04 0.0484 0.0484 0.0491 0.0494 0.0516 0.0538 0.0560

0.05 0.0353 0.0376 0.0399 0.0422 0.0444 0.0466 0.0489

0.06 0.0280 0.0303 0.0326 0.0349 0.0372 0.0395 0.0417

0.07 0.0060 0.0083 0.0105 0.0126 0.0146 0.0167 0.0186

0.08 0.0046 0.0068 0.0091 0.0112 0.0133 0.0153 0.0173

0.09 0.0000 0.0054 0.0077 0.0098 0.0120 0.0140 0.0160

0.1 0.0000 0.0000 0.0063 0.0085 0.0106 0.0127 0.0147

0.11 0.0000 0.0000 0.0049 0.0071 0.0093 0.0114 0.0134

0.12 0.0000 0.0000 0.0000 0.0057 0.0079 0.0100 0.0121

0.13 0.0000 0.0000 0.0000 0.0044 0.0066 0.0087 0.0108

0.14 0.0000 0.0000 0.0000 0.0000 0.0052 0.0074 0.0095

0.15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0061 0.0082

cape
rate

 
Other parameters: 1.0=a , σ =0.01, δ =0.3 
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Figure 11 Cap on floating coupon bond 

 
4. Conclusion 

    When counter party credit risk exists, default factor need to be considered in pricing 
process. This article uses two Markov processes, Hull-White model and Jarrow-Turnbull 
model, to build a combining risky interest rate tree for pricing risky interest rate derivatives. 
Meanwhile, the bankruptcy process is specified exogenously then the data is observable in the 
trading market. Upon determining the estimations of mean reversion and volatility of interest 
rate and acquiring default probabilities, the risky term structure could be accomplished. The 
risky tree, as a discrete combining lattice, not only fits the original term structure but also 
embraces the credit information of underlying assets. Upon satisfying both of advantages of 
HW model and JT model, it provides a useful method for pricing credit sensitive bonds and 
spread-adjusted contracts, such as interest rate options or swaps. The risky term structure 
could be widely extended to multi-factor interest derivatives, for example, mortgage or 
convertible bond. 
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    In our simulation, we can see that mean reversion, interest rate volatility, and strike price 
(or cap rate) are important factors of valuing interest derivatives. Mean reversion and 
volatility determine the scope of interest term structure, on the other hand, strike price 
determine cash flow upon comparing floating interest rate level or the risky bond value. 
Notice that the change of recovery rate doesn’t affect option value, neither put nor cap, since 
recovery rate is a tradeoff with default probability. Under similar credit risk, higher recovery 
rate just brings up higher default rate. 
 Since spot rate is the only endogenous factor of the tree, the lattice model may bring up 
some drawbacks of negative branching probability and negative martingale probability of 
default, especially in condition of excessive volatility of interest rate and irregular price 
movement of zero bond and corporate bond. For example, if the value of risky corporate bond 
is greater than government bond, the negative default probability may occur. Nevertheless, it 
doesn’t affect the efficiency of pricing work. 

 
References 

1. Black, F. and Cox, J. C. (1976) Valuing Corporate Securities: Some Effects of Bond 
Indenture Provisions, Journal of Finance, 31 (2), pp. 351-367. 

2. Chance, D. (1990), Default Risk and the Duration of Zero Coupon Bonds, Journal of 
Finance, 45(1), pp. 265-274. 

3. Heath, D., Jarrow R. and Morton, A. (1992), Bond Pricing and The Term Structure of 
Interest Rates: A New Methodology for Contingent Claims Valuation, Econometrics, 
60(1), pp. 77-105. 

4. Ho, T. and Lee, S. B. (1986), Term Structure Movements and Pricing Interest-Rate 
Contingent Claims, Journal of Finance, 41(5), pp. 1011-1029. 

5. Ho, T. and Singer, R. (1982) Bond Indenture Provisions and the Risk of Corporate Debt, 
Journal of Financial Economics, 10, pp. 375-406. 

6. Hull, J. and White, A. (1994), Numerical Procedures for Implementing Term Structure 
Models : SingleⅠ -Factor Models, Journal of Derivatives, 2(1), pp. 7-16. 

7. Hull, J. (1994), Numerical Procedures for Implementing Term Structure Models : Ⅱ

Two-Factor Models, Journal of Derivatives, 2(2), pp. 37-48. 
8. Hull, J. and White, A. (1995), The Impact of Default Risk on the Prices of Options and 

Other Derivative Securities, Journal of Banking & Finance, 19(2), pp. 299-322. 
9. Jarrow, R.A. and Turnbull, S. (1995), Pricing Options on Derivative Securities Subject to 

Credit Risk, Journal of Finance, 50(1), pp. 53-85. 
10. Johnson H. and Stulz, R. (1987), The Pricing of Options with Default Risk, Journal of 

Finance, 42(2), pp. 267-280. 
11. Kim, I. J., Ramaswamy, K. and Sundaresan, S. (1993), Does Default Risk in Coupons 

Affect the Valuation of Corporate Bonds? A Contingent Claims Model, Financial 
Management, 22(3), pp. 117-131. 

12. Merton, R. C. (1974), On the Pricing of Corporate Debt: The Risk Structure of Interest 
Rates, Journal of Finance, 29(1), pp. 449-470. 



18 

信用風險下之利率期限期構: 公司債賣權與利率上限之應用 
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摘要  

近來由於金融交易違約風險逐漸提高，使得在作資產價值衡量時，交易對手信用風

險衡量格外受到重視。這一篇文章是主要以 Hull-White 模型和 Jarrow-Turnbull 模型為基

礎，來建構一個風險性利率期限結構。此風險性利率樹模型不但反應出目前市場利率期

限結構，並且將特定風險性資產的信用狀況考慮到模型中，用以合理地衡量金融商品價

格。而模型的優點是可以透過簡單間斷計算方法下，求得未來各期的即期利率，而違約

過程的參數估計也可直接從市場上觀察到的資料算出。另外，此模型可以廣泛地用在利

率相關商品上，例如當我們在作具有信用風險敏感度的債券評價和利率價差計算時，都

能透過風險性利率樹狀圖來求得。本篇重點除了在說明風險性利率期限結構的建構外，

也將模型應用在兩個標地物資產是具有違約風險的利率衍生性金融商品，即公司債賣權

和利率上限的評價。透過數值分析的模擬，來了解不同參數投入下對商品本身價值的影

響。 
 
關鍵字：利率期限結構、信用風險、三項樹、利率上限、賣權 


