Approximation Theorems of the Empirical Distribution of the Sample Mean For Φ-Mixing Random Vectors

Bih-Sheue Shieh* and Sheng-Kai Yang**

*Department of Management Information Science, **Department of Cosmetics Science, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan 71710, R.O.C.

ABSTRACT

Let $\{\vec{X}i:-\infty < i < \infty\}$ be a ϕ -mixing stationary sequence of random vectors. Let $F_n(\vec{X})$ be the corresponding empirical distribution function of $\vec{X}_1, \cdots, \vec{X}_n$, and let \vec{X} , be the sample mean of $\vec{X}_1, \cdots, \vec{X}_n$. The object of the present investigation is to show that the asymptotic almost sure representation of $F_n(\vec{X})$. Two different orders of the remainder term, under different ϕ -mixing conditions, are obtained and used for proving functional central limit theorems, laws of iterated logarithm, Wiener processes embedding and invariant principles for $F_n(\vec{X})$.

Key words: weakly dependent random vectors; invariant principle; law of iterated logarithm; ϕ -mixing.

INTRODUCTION AND PRELIMINARIES

Let $\{\vec{X}i:-\infty < i < \infty\}$, $\vec{X}_i = (X_{i1},\cdots,X_{iq})$ with $q \ge 1$ be a stationary ϕ -mixing sequence of random vectors defined on a probability space (Ω,A,P) . Thus if M_{∞}^k and M_{k+n}^{∞} are respectively the σ -fields generated by $\{\vec{X}i:i \le k\}$ and $\{\vec{X}i:i \ge k+n\}$ and if $E_1 \in M_{\infty}^k$ and $E_2 \in M_{k+n}^{\infty}$, then for all $k(-\infty < k < \infty)$ and $n(n \ge 1)$,

$$|P(E_2|E_1) - P(E_2)| \le \phi(n), \quad \phi(n) \ge 0$$
 (1)

where $1 \ge \phi(1) \ge \phi(2) \ge \cdots$, and $\lim_{n \to \infty} \phi(n) = 0$. We may remark that both m-dependent and autoregressive processes belong to the general class of strong-mixing or ϕ -mixing processes, see for example, Billingsley (1968).

Throughout this work, $\{\vec{X}i:-\infty < i < \infty\}$ is a stationary sequence of ϕ -mixing random vectors from a q-variate distribution $F(\vec{x})$ with Cov $(\vec{X}i)$ exists, where $\vec{x}=(x_1,\cdots,x_q)\in R^q$. Let $\vec{\xi}=(\xi_1,\cdots,\xi_q)=(EX_{11},\cdots,EX_{1q})=E(\vec{X}i)$ be a point in R^q such that for the j-th variate of $\vec{X}i$ (i.e., for $X_{1/2}$), $P\{X_{1/2} \le \xi_1\}=p_1$, $0 < p_2 < 1$, $j=1,\cdots,q$. We assume that in some neighborhood of $\vec{\xi}i$, $F(\vec{x}i)$ is strictly monotonic in each of its q coordinates, and admits of a continuous density function $f(\vec{x}i)$, such

①混合隨機向量樣本平均之近似理論

謝碧雪* 楊勝凱**

*嘉南藥理科技大學資訊管理學系 **嘉南藥理科技大學化妝品應用與管理系

摘 要

本篇論文旨在討論在不同的 φ 混合條件下。 φ 混合穩定隨機向量之樣本平均的近似表現。中央極限理論,對數反覆律及不變原理等性質。

關鍵字:弱相關隨機向量、不變原則、對數反覆律、φ混合。