Poster 4.30

Effects of Optical Flow on Gait Patterns in Parkinsonian Rats

H. Y. LEE¹, T. C. CHANG¹, T. H. HSIEH² and Y. W. LIU³

¹Department of Digital Media Design and Management, Far East University, Tainan, Taiwan, ROC
²Institute of Biomedical Engineering, National Cheng-Kung University, Tainan, Taiwan, ROC
³Department of Information Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC

Parkinson's disease (PD) is a common age-related neurodegenerative disorder in which visuospatial cognitive functions including spatial navigation are impaired. The characteristic gait disturbances of Parkinson disease (PD) include shuffling gait, short steps and low walking velocity. Research has shown that gait improvement can be facilitated by the perception of motion from optical flow, i.e. moving visual cues. In this study we investigated the features of treadmill walking in a rat of partial akinesia obtained from PD caused by unilateral infusion of the neurotoxin 6-hydroxydopamine (6-OHDA) into substantia nigra pars compacta. The images of foot prints of rats walking on the transparent belt of a treadmill were captured using a digital camera. Image analysis was performed offline to identify the foot contact time of bilateral hindlimbs as well as the body orientation of control and PD rats during treadmill walking. The parameters of swing and stance time were firstly evaluated. Compared with controls, the gait impairment in PD can be clearly observed from asymmetrical gait patterns from a decrease in swing time especially in the affected side but an increased in stance time of both hindlimbs. Our results suggested that the unilateral rat model of PD reflected compensatory changes in the sound side for motor deficits resembling the key features of human parkinsonian gait. The validation tests of animal behaviors were further observed from the changes of body orientation performed under the influence of optical flow.

Poster 4.31

Cell Loss in the Cerebral Cortex in Huntington's Disease

A. L. NANA¹, D. C. V. THU¹, D. E. OORSCHOT³, L. J. TIPPETT³, V. M. HOGG³, H. J. WALDVOGEL¹ and R. L. M. FAULL¹

¹Department of Anatomy with Radiology, ²Department of Psychology, University of Auckland, Auckland, New Zealand
³Department of Anatomy & Structural Biology, University of Otago, Dunedin, New Zealand

Huntington's disease (HD) is an inherited neurodegenerative disorder with a variable motor/mood symptom profile. HD is characterised by the loss of neurons in both the striatum and the cerebral cortex. This study aimed to investigate the neuronal cell loss in the primary visual cortex (1°VC), secondary visual cortex (2°VC), middle temporal gyrus (MTG) and superior parietal cortex (SPC) in the human brain in HD and to compare these changes to the dominant symptomatology (motor or mood) and neuropathological striatal grade of each case. The overall pattern of neuronal loss was investigated on perfusion-fixed human cortical blocks using Neuronal N with standard immunohistochemical procedures and unbiased stereological cell counting techniques. The stereological cell counts demonstrated that in HD there is a significant cell loss in the SPC (36%), MTG (27%) and 2°VC (27%), but no significant cell loss in the 1°VC. The cell loss in these three regions increased with the grade of striatal pathology, with a 32-39% neuronal loss in advanced grade 3 cases. Comparison of the cell loss with the motor/mood symptom profile showed that there was a significant cell loss in the SPC across both motor and mood HD cases, while cell loss in the MTG and 2°VC was only found in cases with a significant mood component. These findings show that in HD there is a significant cell loss in the parietal, temporal, and visual association cortex, and that this loss varies according to symptom profile.