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Recently, Sun constructs association schemes and PBIBDs (partially
balanced incomplete block designs) by using finite rings. We study the
structures of these combinatorial objects constructed by Sun’s method
and their related topics, such as the application to constant weight
codes. Some computational approaches are considered.
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1. ‡k

!¯j� (association schemes) 5Ü�ÑHb ¯çí3b�æ5ø. D
wóÉ:í�){Ü� (coding theory),qlÜ� (design theory), Ç� (graph
theory) ¸�Ìˇ� (finite group theory).

Definition 1.1. Suppose V is a nonempty set. We need a partition of
the collection of all two-element subsets of V as an association scheme
is defined by a specific partition. Let P2(V ) be the collection of all
two-element subsets, i.e., P2(V ) = {A ⊂ V | |A| = 2}. Suppose
A = {A1, A2, . . . , Am} is a partition of P2(V ), so each Aj is a collection
of two-element subsets of V , and for each x, y ∈ V with x 6= y, there
is exactly one Ai ∈ A such that {x, y} ∈ Ai. Let Im = {1, 2, . . . , m}
and (h, i, j) ∈ I3

m. For any x ∈ V , let Ai(x) = {y ∈ V | {x, y} ∈ Ai}.
Then for any {x, y} ∈ Ah, define Ah

ij(x, y) = Ai(x) ∩ Aj(y) and let

P h
ij(x, y) = |Ah

ij(x, y)|. If there is an integer ph
ij so that P h

ij(x, y) = ph
ij

for every {x, y} ∈ Ah and for every (h, i, j) ∈ I3
m, then A is called a

(symmetric) association scheme on V . The A1, A2, . . . , Am are called
the associate classes of the association scheme.

¶}�©.êr)–ql (partially balanced incomplete block designs,
or PBIBDs) \wÑu�©.êr)–ql (balanced incomplete block de-
signs, or BIBDs) 5øO“. PBIBD í–1uâ Bose £ Nair FT|[7].
Fbíû˝3buÊ PBIBDs with two associate classes[8].

Definition 1.2. Let V be a finite nonempty set of symbols, and sup-
pose B is a nonempty collection of nonempty subsets of V . Then (V,B)
is called a tactical configuration if there are parameters (v = |V |, b =
|B|, r, k) with the following properties: (1) |B| = k for any B ∈ B, and
(2) |{B ∈ B | x ∈ B}| = r for any x ∈ V .

Õ¯B2íjÖ\˚Ñ)– (blocks).

Definition 1.3. Suppose (V,B) is a tactical configuration with an asso-
ciation scheme A on V . Then (V,B,A) is a PBIBD (partially balanced
incomplete block design) if the following two conditions are satisfied.

(1) To each Ai ∈ A, there is an integer ni so that for each x ∈ V
there are exactly ni distinct y ∈ V such that {x, y} ∈ Ai.

(2) To each Ai ∈ A, there is an integer λi such that if {x, y} ∈ Ai,
then x and y belong to exactly λi distinct blocks of B.

ø_ PBIBD x�tactical configuration 5¡b (v, b, r, k),!¯j� (association
schemes) 5¡b ph

ij, £w…¡b ni D λi.

Example 1.1. Let V = {0, 1, 2, 3, 4, 5}. The following is a partition
A = {A1, A2, A3} of P2(V ).
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A1 = {{0, 1}, {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 0}},
A2 = {{0, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 0}, {5, 1}},
A3 = {{0, 3}, {1, 4}, {2, 5}}.

One can check that p3
12 = p3

21 = 2, p2
22 = p1

12 = p1
21 = p2

11 = p1
23 = p1

32 =
p2

13 = p2
31 = 1, and remaining ph

ij = 0. Therefore A is an association
scheme on V .

Let B = {B1, B2, . . . , B6}, where

B1 = {0, 1, 5}, B2 = {0, 1, 2}, B3 = {1, 2, 3},

B4 = {2, 3, 4}, B5 = {3, 4, 5}, B6 = {0, 4, 5}.

Then (V,B) is a tactical configuration with parameters (v, b, r, k) =
(6, 6, 3, 3). Together with the above association scheme, we have that
(V,B,A) is a PBIBD with the additional parameters (n1, n2, n3) =
(2, 2, 1) and (λ1, λ2, λ3) = (2, 1, 0).

2. û˝ñí

Bbû˝¤��Zj�í ¯ÓK5!Z, J£D¤óÉí�æ, Wàì�

{(constant weight code) ,í@à. °v5?ø<l�,½æ.

3. d.«n

�'Öí!¯j�˛\êÛ. ~¡5ø<‡e: [5], [10], [16], [31]. œ¡í

û˝�ø<[Ê}é,å[17, 22]. Ê@àjÞ˛�rÖä�, WàÊ Graph
Theory jÞ; ¢WàÊ Coding Theory jÞ[9, 12].
ÖÍ�'Öí!¯j�˛\êÛ, Ou1³�rÖí PBIBDs \�Z. ¥¶

}~¡5: [4], [15], [18], [20], [23], [24]. ×_íû˝uO½ÊõðqljÞ

Two-Associate-Class PBIBDs í4”, Most attention has been paid to
PBIBDs with two associate classes[8]. Cheng and Bailey showed the
optimality of some such PBIBDs[13].

4. û˝j¶

We will focus on the structures of the constructions of PBIBDs. Most
of the results concern with the size b = µn of the PBIBD— directly or
indirectly.

Theorem 4.1. Let (R, +, ·) be a finite ring with unit. Let U(R) denote
the set of invertible elements and suppose Φ is a subgroup of U(R) with
−1 ∈ Φ. Also let S be a proper subset of R with |S| ≥ 2. Define
an equivalence relation ∼ on R∗ = R \ {0} by s1 ∼ s2 if there is
b ∈ Φ such that bs1 = s2. Let s1, s2, . . . , sm be representatives of the
distinct equivalence classes. Define Ai = {{x, y} | (y − x) ∼ si} for
i = 1, 2, . . . , m. Let A = {Ai | i = 1, 2, . . . , m}. Define B = {bS +
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a | b ∈ Φ, a ∈ R}. Then (R,B,A) is a PBIBD(partially balanced
incomplete block design). Moreover, if S satisfies S 6= −S + a for any
a (i.e., −1 /∈ 1), then the above PBIBD can be partitioned into two
isomorphic PBIBDs; in this case each of the values b, r, and λi for
these two PBIBDs is half of the corresponding one for (R,B,A).

Define ∼c on Φ by b1 ∼c b2 if there is a ∈ R such that b1S = b2S +a.
Then ∼c is an equivalence relation on Φ. Define ∼r on R by a1 ∼r a2

if S + a1 = S + a2. Then ∼r is an equivalence relation on R.
Let n = |Φ/∼c| and µ = |R/∼r|. Let Tc = {b1, b2, . . . , bn} be a set

of representatives of the equivalence classes induced by ∼c, and denote
the equivalence class of b by b. Also let Tr = {a1, a2, . . . , aµ} be a set
of representatives of the equivalence classes induced by ∼r, and denote
the equivalence class of a by ã.

Theorem 4.2. (1) 1 is a subgroup of Φ.
(2) The equivalence classes induced by ∼c are exactly those left

cosets of 1 in Φ; we have b = b1 for any b ∈ Φ.
(3) Φ =

⋃n
k=1 bk =

⋃n
k=1 bk1 = Tc1 =

⋃

β∈1 Tcβ.

(4) n = |Φ|/|1|.

Theorem 4.3. (1) 0̃ is a subgroup of R.
(2) The equivalence classes induced by ∼r are exactly those cosets

of 0̃ in R; we have ã = a + 0̃ for any a ∈ R.
(3) R =

⋃µ
k=1 ãk =

⋃µ
k=1(ak + 0̃) = Tr + 0̃ =

⋃

α∈0̃(Tr + α), where

Tr + 0̃ means {a + x | a ∈ Tr, x ∈ 0̃}.
(4) µ = |R|/|0̃|.
(5) S is a union of some cosets of 0̃, and |0̃| divides |S|.
(6) If ∼r is nontrivial, that is, |0̃| > 1, then gcd(|S|, |R|) > 1.

Corollary 4.4. If S is an additive subgroup of R, then 0̃ = S.

One can see that B remains the same if S is replaced by any βS + α
or β(S + α), where β ∈ Φ and α ∈ R. This allows for some flexibility:

(1) If
∑

x∈S x = 0, we say that S is a zero-sum generating block (abbreviated
as ZSGB). Especially when gcd(k, charR) = 1, where k = |S|,
we can assume S is a ZSGB. Why? If we let s =

(
∑

x∈S x
)

k−1

and S ′ = S − s, then the summation for S ′ is zero and S ′

generates the same B as S does.
(2) Sometimes we will choose S such that 0 ∈ S, if this can make

the discussion convenient.
(3) We can use another S with 1 ∈ S if there is c ∈ S with c ∈ Φ.

Proposition 4.5. If S is a ZSGB and gcd(|S|, charR) = 1, then 1S =
S.
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Corollary 4.6. If S is a ZSGB with 1 ∈ S and gcd(|S|, charR) = 1,
then

(1) 1 ⊆ S;
(2) k = |S| ≥ |1|; and
(3) n ≥ |Φ|/|S| = n′/k.

We conclude that vn′ ≥ b = µn ≥ [vn′/k2] when S is a ZSGB with
1 ∈ S and gcd(k, charR) = 1.

Proposition 4.7. Let Zn be the commutative ring of integers modulo
n, where n = pα1

1 pα2
2 · · · pα`

` . Let Φ = U(Zn). Let si be the proper
divisors of n. Also let s0 = n. Then we have

(1) |A| = m = (α1 + 1)(α2 + 1) · · · (α` + 1) − 1.

(2) ni = φ( n
si

) and n =
∑m

i=0 φ
(

n
si

)

=
∑

d|n φ(d), which is a well-

known result in number theory.

5. !‹Dn�

Definition 5.1. (1) Suppose S is a zero-sum generating block. Then
it is of the first type if 0 /∈ S. If 0 ∈ S, we say that S is of the
second type. A ZSGB containing 1 is abbreviated as ZSGBO.

(2) For any nonempty subset S of R, define S to be a generating
block of the first type if there exist β ∈ U(R) and α ∈ R such
that βS +α is a ZSGB of the first type; if there exist β ∈ U(R)
and α ∈ R such that βS + α is a ZSGB of the second type, we
say that S is of the second type.

(3) For any PBIBD (R,B,A) constructed in Theorem 4.1, we say
B (or the PBIBD) is of the first type if it is generated by a
first-type block; B (or the PBIBD) is of the second type if it is
generated by a second-type block.

Theorem 5.1. Suppose gcd(k, charR)=1. Then any generating block
S ⊂ R with |S| = k is either of the first type or of the second type.
Therefore any PBIBD with block size k is either of the first type or of
the second type.

Theorem 5.2. Given a finite ring R with |R| = v and block size 3 ≤
k ≤ v − 3, let Φ = U(R). Consider the action of G = {τb,a | b ∈

U(R), a ∈ R} on the complete design
(

R
k

)

; each orbit is therefore a
PBIBD. Then the number tk of distinct simple PBIBDs with block size

k is

∑

τb,a∈G |Fix(τb,a)|

v|U(R)|
.

Proof. The proof is by the Burnside Orbit Formula. �
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Corollary 5.3. Let R = Zv, the commutative ring of integers modulo
v. Let G = {τb,a | b ∈ U(Zv), a ∈ R}. Then the number tk of distinct

simple PBIBDs with block size k is

∑

τb,a∈G |Fix(τb,a)|

vφ(v)
.

In the rest part, we consider the case when R = Zv and Φ = U(Zv).
First we want to construct certain kind of PBIBDs such that λi = 0

for any i 6= η. That is, we want to choose S so that {c, d} ∈ Aη for any
c, d ∈ S. Note that Aη = {(x, y) | y − x ∈ U(Zv)sη}

Theorem 5.4. Let R = Zv, where v = pα1
1 pα2

2 . . . pα`

` and p1 < p2 <
· · · < p`. Suppose k ≤ p1. Then S = {0, 1, . . . , k − 1}sη generates a
PBIBD with the following property: λi = 0 for any i 6= η.

Proof. It is clear that {c, d} ∈ Aη for any c, d ∈ S. We have λη =
2µnk(k−1)
vφ(v/sη)

. �

For example, in Z25, S = {0, 1, 2, 3, 4} is such a set. It is also clear
that for k greater than p1, there is no PBIBD such that λi = 0 for any
i 6= η. From the above result we obtain

p2 ≤ A(p3(p − 1), 2p(p − 1)2, p2(p − 1)).

For example, 4 ≤ A(8, 4, 4) and 9 ≤ A(54, 24, 18).
Next we give an algorithm for finding all the PBIBDs from the con-

struction when gcd(k, v) = 1.

Algorithm I.

1. Input: v, an integer, k, 3 ≤ k ≤ v
2
, gcd(k, v) = 1

2. S := {1, 2, . . . , k};
CountPBIBD := 0;

3. if min S = v − k then goto Step 11
4. S := next generating block with higher ord
5. if

∑

x∈S x 6= 0 then goto Step 3
6. |1| := 1
7. for any 1 6= x ∈ U(Zv) do

if ord(S) < ord(xS)
then goto Step 3
else if ord(S) = ord(xS)

then |1| := |1| + 1
8. CountPBIBD := CountPBIBD + 1;

n := φ(v)
|1|

;

b := vn, r := kn, λi := vn·|{{c,d}⊆S|{c,d}∈Ai}|
|Ai|

9. Output: S, n, (v, b, r, k), λi

10. goto Step 3
11. end
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Theorem 5.5. If S is a zero-sum generating block and gcd(k, v) = 1,
where k = |S|, then

(1) β1 ∼c β2 ⇐⇒ β1S = β2S, and so 1 = StabU(Zv)(S);
(2) |StabF ∗(S)| divides k if S is of the first type;
(3) |StabF ∗(S)| divides (k − 1) if S is of the second type;
(4) {bS | b ∈ F ∗} = {b1S, b2S, . . . , bnS}.

Therefore, when v is of the form pα or 2pα, and gcd(k, v) = 1, given
a generating block S, it is quite easy to compute the size of the PBIBD
generated by S.

Algorithm II.

1. Input: v, of the form pα or 2pα, S ⊂ Zv, gcd(|S|, v) = 1
2. g := a primitive root of U(Zv);

k := |S|, s := (
∑

x∈S x)k−1;
3. S := S − s
4. if 0 ∈ S then t0 := 1 else t0 := 0
5. d := gcd(k − t0, φ(v))
6. factorize d
7. for i | d from large to small do

begin

q := g
φ(v)

i ;
if qS = S then goto Step 8;

end
8. n := φ(v)

i
;

Tc := {1, g1, . . . , gn−1};
b := vn, r := kn;

9. Output: S, n, Tc, (v, b, r, k)
10. end

6. A‹AÇ

F)ƒhíìÜ£l�!‹øªJ�díj�ê[×Û.
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