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Abstract _

Empirical researchers are often confronted with the problem of making choice
among alternative statistical models, the choice of a model selection criterion will
depend on the amount of a priori information and plans for future of the models. The
problem of choice among nonnested models was originally discussed by
Hotelling(1940), he derived a test for the selection, later, Cox(1962) discussed the
selection from the classical point of view, a considerable amount of work in the area
of choice among alternative models has been done recently.

The purpose of this study will be to list the available material related to the choice
among the nonnested normal linear models. The criteria will be classified and their
selection rules will be described and introduced. Section 1 covers specialized methods
for comparing linear models, Fequentist and Bayesian methods for general models are
treated in Section 2 and 3, respectively, the use of a predictive density for model

selection is covered in Section 4.
Keywords . nonnested, linear model, fequentist, Bayesian, predictive density.

Resul ts
Section 1. Methods for linear models

The Coefficient of multiple determination R’ is the proportien of the total variation
about the mean in the data explained by the model

_20.-%)" _ 5S(model)

R?= = 1.1
Y057 SSlota) (D
_ . 2 RSS _ :
where yzz-—‘. FurthermoreR® =1~ —————= | where RSS=SS(total)-SS(model) is
n SS(total)

the residual sum of squares. Thus selecting the model with the largest R® is
equivalent to selecting the model with the smallest residual sum of squares RSS.

The numerator of R’ tends to increase when the dimension is increases causing a
higher dimensional model to have a larger R’ than a lower dimension model, in
particular for the nested models. To lessen this effect, the R’ statistic is often adjusted
to explicitly incorporate the dimension. The adjusted coefficient of multiple



determination R® is given by

=~ _.__ RSS/n-p) s (ﬁ-n
=1 SS(oral) -1 =1-(1-R )(n_p) ....................... (1.2)

It is clear that if SS(total) and n are fixed, then R® increase if and only if the mean
RSS

(—p)

is equivalent to selecting the model with the smallest mean squared error MSE

decreases. Thus selecting the model with the largest R

squared error MSE=

Mallows(1973) proposed a model selection criterion based on an estimate of the
total mean squared error of the n fitted values scaled by the true error variance. In a

plot of C, against p, theC, values for those models with small bias should be near

the lineC,=p. The C, value below the lineC, =p may suggest a violation of the

model assumptions.
Allen(1976) proposed a model selection method based on a cross-validation
assessment of the predictive ability of the model. For a given component ) of y, let

Jjw denote the predicted value of ) when the model is fitted with ¥, omitted. The

squared error of prediction (y—j}m)z provides a measure of the predictive ability of

the model with respect to);. Combining these squared errors of prediction gives

Allen’s prediction sum of squares statistic

PRESS=31; 3y F cccovvvo oo (13)
=

A small PRESS value indicates that the model fits well in the sense of having small

prediction errors.

Section 2. Frequentist methods for general models
Several frequentist methods for choosing a model from a finite collection of
candidate models M, -;M, are described in the following. From a frequentist point

of view, a model M, consists of a specification of the sampling distribution of the
observation vector y given a k; dimensional model specific parameter vector g .

Let f(y|6.M) denote the conditional density of y given ¢, under modelM,, The

maximum likelihood principle suggests selecting the model with largest maximized

[ikelihoodli;.(y) = f()’]g?jM.), Whereé} 1s the maximum likelihood estimate of 6, under



model M. This approach is often expressed in the equivalent form of minimizing

Choosing a model based on the maximized likelihood tends to favor higher

dimensional models especially when the models are nested. Several modifications of

maximum likelihood criterion of the form - 2log f,j (y)+h(n,k,)have been proposed.

The quantity A(nk) serves as a penalty to lessen the tendency of the maximum

likelihood criterion to favor higher dimensional models. Two commonly used criteria

of this form are Akaike’s(1973) information criterion AIC
AIC, ==2log L,(y)+2k; ...................... (2.2)
and the Bayes information criterion BIC of Schwarz(1978) and Leonard(1982)
BIC, = —2log L,(y) + 4, log (n) ... (2.3)

In addition to the BIC procedure, two other commonly used criteria are Shibata(1980)

information criterion

SIC =—2logl, (v)+2nlogn+2k,)...................... (2.4)
and
HOQIC, = —Zlogf,j(y) +2kj.clog(log(n)) e (229)

of Hannan and Quinn(1979), where ¢ >1 is a constant.
Assuming the true model is among the competing models, Hurvich and Tsai(1989)
and (1991) derived a bias corrected version of AIC for regression models. Their

computations yield the corrected AIC statistic

~ 2n(p. +1 2p. +D(p. +2
CAIC = —2log 1)+ -tV _ jye 28 0B+
: n-p.—2 ’ n-p, -2

J

e (2.6)

Besides the above information criteria, Cox(1961), Atkinson(1970) and
Quandt(1972) provided methods of separate families of densities. Two families of
densities are said to be separate when an arbitrary density in one family cannot be
obtained as a limit of a sequence of densities in the other family. Cox suggested the
exponential mixture model with the density proportional to

fy 1 6L,MY £, (y|6,M) ™ (2.7)
as special cases of a comprehensive model. Letting A vary between O and 1



produces a continuous range of competing models. Atkinson treated this approach and
developed a test for departures from one model in the direction of the other in the

sense of a test that 4 =0orA =1. He argued that the hypothesis A = %indicates that

both models fit the data equally well or equally badly. Several of discussants of

Atkinson(1970) indicates that this interpretation of A = % may not be appropriate.

Atkinson also considered this method with thed4 and 1- 1 replaced by arbitrary
positive constant A, and 4,.
Atkinson also suggested that a convex combination model with density
AMAGIOLM) +(1-2) £(y|6,,M,) (2.8)
might serve as a useful comprehensive model. For testing nonnested hypotheses,
Quandt(1972) presented an approach based on this comprehensive model Here A
may be interpreted as the probability that nature has chosen f(y|4,A4) for generating
y. Compared to (2.7), the comprehensive model in (2.8) is easier to interpret since the
comprehensive model is the mixture of two distributions. Quandt suggested forming a
confidence interval for A, and he stated that if the interval does not overlap 1, then
5(v18,M) is not appropriate. Similarly, if the confidence interval forA does not
overlap O, then f£(y|&,M)is not appropriate. If the confidence interval overlaps
neither 1 nor 0, then the information is inadequate for discriminating between the two
models. If the interval overlaps both 1 and 0, this indicates that both models are

appropriate.

Section 3. Bayesian methods for general models

The Bayesian approach and certain approximations to the Bayesian approach are

discussed in the following section. Let a(M,) denote the prior probability of model

M., with Zﬂ(ﬁ/{)ﬂ. Under modelM,, let n(f|M,) denote the prior density of g

J

and let f(y|6,M,) denote the conditional density of the observation vector y given

¢ and M. The posterior density of 4 given y and M, will be denoted by

7

76, |y,M;). The marginal or predictive density of y under model M, is

mly | M) = [ £(y |0, MO, [ M)B, ... (3.1)

This marginal density can be viewed as a weighted likelihood function since it is the



average of the conditional sampling densities with respect to the prior (6, | M;). The

posterior probability of model M, is

(M ;)m(y | M)

P = S0 mey 1)

the posterior model probability AM,|y) can be viewed as a revision of the prior

model probability 7(A7) based on the observed data.

Bayesian model selection methods are usually based on Bayes factors or on the
posterior model probabilities. For simplicity consider the comparison of two
modelsM, and A4, the Bayes factorKy) for model M in favor of model M, is
defined by
P(M, |y)/P(M, | y)

n(M,)/n(M)

The Bayes factor is a data based multiplier for adjusting the prior odds ratio to give
the posterior odds ratio. A value of Hy) greater than one indicates that the data

B(y) = (33

increase the a prio evidence in favor of model A, over model M,. The Bayes
factor can also be expressed as the ratio of the predictive densities under M and M,

that is

m(y | M,)

B(y) = W ----------------------- (3.4)

Thus a value of By) greater than one indicates that modelM| fits the data better
thanM, in the sense that the predictive density evaluated at the observed data is larger

under M than it is underAs,. Proper prior distributions for the model specification

parameters & must be specified if the Bayes factor is to be used for model comparison.

If the improper prior 7z (6, M ) is deemed suitable, then c (6, | M), where ¢, is

an arbitrary positive constant, should be just as suitable. Thus the Bayes factor

_om(y | M)
B(y) = oy | My (3.5)

2

is undetermined under improper priors since the ratio ¢/c, is undefined.
Two common fixes for this problem are described below. The first solution is to
avold the specification of these prior distributions altogether by considering an

asymptotic approximation to the Bayes factor. The second solution is to use part of



the data to update the improper priors yielding proper “prior” distributions,

The description of the large sample approximation to the Bayes factor given below
is adapted from the presentation in Kass and Raftery(1995). This approach is based on
the Laplace approximation which is treated in more detail in Tierney and
Kadane(1986), Kass and Kadane(1989), and Barndorff-Nielson and Cox(1989).

Assume that the posterior density, which is proportional to 7 (y | 0,,M (9, |M,),

18 highly peaked about the posterior mode @: Kass and Rafetery argued that this

assumption 1s usually reasonable when fF(y | 8,,M ) is highly peaked near its

maximum likelithood estimate gj Application to Laplace approximation of the Bayes

factor By) gives the approximation

1

o

A% 1 S (3.6)

2

- Y-y (6. M)7(6, | M)Z
B(y) = (27)2 e Sy 60,M)x (6, _‘1

f(y16:,M)m (6, | M,)E,

For large value of n, é: will be approximately equal to the maximum likelihood
estimate @J and E;l , which is the negative of the Hessian matrix of second
derivatives of log [f(y |0, M )z(0; |M ) evaluated at tHS’;3 will be

approximately equal to the observed informaticn matrix i}l. Substituting these values

into the above expression yields the alternative approximation to Ay) given by

1
L F16,M)m(@ | M)

B(y) = (27) E—
J G 16, M,)w(6, | M)

When the observations y form a random sample, the quantitylog‘il}.! will have the

same asymptotic behavior as— & logn . Leonard(1982) suggested dropping terms that

are asymptotically negligible and approximating log”y) by



Ly) 1
S(y)=log=—~——(k —k)logn ................... . (3.8)

Ly 277~

where ﬁj(y) denotes the maximized log likelihood under model M;. For nested

linear models, Kass and Wasserman (1995) showed that the statistic S(y) roughly
approximates the logarithm of the Bayes factor B(y) in the sense that

lim ~ 2= P®) (3.9)
P lﬂg B(y) .................... .

Notice that S(y) does not depend on the priors fz((% |M)), and
-28(0)=BIC-BIC ....................... (3.10)

where BJ( is the Bayes information criterion for model M;. Hence this large

sample approximation leads to the model selection procedure advocated in

Schwarz(1978) and Leonard(1982). That is, to select the model M, to minimize

BIC.

An obvious solution to the nonexistence of the Bayes factor under improper priors
1s to use part of the data to update the improper priors giving proper “priors” from

which a Bayes factor can be computed. Let y =(y,,y,) denote a decomposition of

the n-dimensional observation vector into an m-dimensional training sample y, and

an (n-m)-dimensional model comparison sample. Berger and Perichhi(1996) defined a

training sample y, to be proper if the(3Uposteriors® |y,,;) are proper for all of the

models M, under considerations. A proper training sample 1y, is said to be minimal
if no proper subset of y, is proper. Once a proper training sample ¥, 1s chosen, it
is used to update the improper prior 7(6 [M) giving

S 6,M)n(8; | M)
[ 7316, M)n(8, | 1, )16,

76, 1M,) =76 |y, M,) =

Notice that ¢ (@ |M)) will yield the same value, since the constant c, appears in

the numerator and the denominator. Assuming that the integral in the denominator of



the above expression converges, this updated prior density is well defined despite ¢ ;

being unspecified. The remaining data y,can then be used to compute the marginal

densities
m(yz]Mj)zjf(yzjﬂj,Mj)fr'(Qj M o, (3.12)

from which the Bayes factor can be computed Berger and Pericchi defined the
intrinsic Bayes factor as the average of the Bayes factors computed using all possible
minimal training samples. They considered intrinsic Bayes factors based on both
arithmetic and geometric averages.

When the sample size is small or the data correspond to a highly structured model,
this training sample method may not be practical. Spiegelhalter and Smith (1982)
proposed a sort of thought experiment to determine the ratio ¢ /¢, for comparing two

nested normal linear models. They assumed that the improper prior #(f3,0, |M) has

the limiting conjugate form
Py

w0, | Mo | M) =c,ad) Pt (3.13)
where the ¢, are undefined constants. The Bayes factor for the reduced model A in

favor of the full model A4, is

XX,
_Gim
%0 %@X‘X

1
2 . \3
(1#92 Brp) 0619
n-p, )

-
!
i

J

where F is the usual F test statistic, and X denotes the full rank p; design matrix

for the model M. Spiegelhalter and Smith introduced the idea of an imaginary

training sample of minimal size which would provide the maximum possible support
to the simpler model. This sample would give a Bayes factor B.,(y) just barely
greater than 1. From equation (3.14), Spiegelhalter and Smith suggested that a

reasonable choice for ¢/c, will be qX;XZMX:XIDH%.

Aitkin(1991) suggested using the entire sample as the training sample and using the
same data for model comparison. This leads to the posterior Bayes factor for model
M versus M,

[ Ay 10,08, [y M) R,
(76 18, 00)m8, |y 24) b,

PORy)=



O’Hagan(1995) suggested using a fractional power of the likelihood to normalize
the likelihood and obtain a fractional Bayes factor. Let b=m/n denote the proportion

of the entire sample y used in the training sampley, . If both m and n are large, the

likelihood f(y, |€;,M ;)will approximate the full likelihood f(y |6,,M ;) raised
to the power b. Thus O’Hagan suggested the fractional Bayes factor

FB(y) =T (b’%(b, SR — (3.16)

where
[Fv10,,M,)m(®, | M )8,
[P (y18,.M ), |M )b,

q,(b,y)=

Section 4. The Predictive methods
Note that the Bayes factor for model A in favor of model A, can be viewed as

the ratio of the predictive densities of these models evaluated at the observed data.

Thus the argument that leads to the Bayes factor as an appropriate quantity for model

selection also suggests the use of the predictive density m(y |M ;) as a basis for the

model selection. To use m(y|M ) for model selection, the values of these
predictive densities at the observed data value are compared and the model for which
m(y | M ;) islargest is selected.

Laud and Ibrahim(1995) suggested a modification of this idea as described below,
once the data y are obtained, define a predictive density for a replicate experiment
PDRE as the density of a hypothetical new observation vector z given y and the

model. Laud and Ibrahim define the PDRE of z given y and M, as

PDRE(z |y,M,) = [ f(2]8,,M )n(®, | y,M )0, ... (4.1)

where 7(0,|y,AM,) is the posterior density for 6, given y under model M.

They suggested two model selection criteria based on the PDRE. The first criterion is

PDRE(y [y,M,) . ... (4.2)

which is the PDRE for model M. evaluated at the observed data y. The ratio of

J



the PDRE(y | y,M ;) values for two different models is the posterior Bayes factor

proposed by Aitkin (1991). The second criterion is
L, =E@-y) -y)=Y|E@) -y  +var@z) 43)
i=1 .

where the expectation is with respect to Z ~ PDRE(z | y,M ). As indicated above

L. can be viewed as a combination of the squared distance from £(Z) toyand the

m

total variability tr(cov(Z)). To use these criteria for model selection, the model is
chosen to maximize equation(4.2) or to minimize equation(4.3).

Stone(1977) and Geisser and Eddy(1979) considered methods based on cross
validation estimates of certain predictive densities. Geisser and Eddy(1979) proposed

two model selection methods for the situation when y = (yl, Vo, Y, )f represents a

random sample. In this context, the density of y under model M, is given

by f(y16,,M) =11, f(y,16,,M ). In stead of using the joint marginal density as

the predictive density, Geisser and Eddy proposed densities based on products of
certain predictive densities for the individual components of y. Their predictive

sample reuse quasi-likelihood method selects the model to maximize

PSRQL; () =TT, (3, 18,0, M) oo, (a4

where éjm denotes the maximum likelihood estimator of &, under modelM, based
on the (m=Dx vector y, = ()1, ¥Vis Virse--,y, ) Obtaining by removing the

i” observation y, fromy.

The second method they proposed is the predictive sample reuse quasi-Bayes

method which selects the model to maximize

PSRQB, (y) = [ [ £, |70 2,) =[] [0 18 .M )7, |y, M, )0, .(4.5)
i=1 i=l

where (6, [y,,M;) is the posterior density of & given y,, under modelM,.

They suggested using a diffuse prior to compute the posterior densities used in
expression (4.5).
Stone(1977) showed that the predictive sample reuse quasi-likelihood predicting

A%



density PSRQL(y) is asymptotically equivalent to the AIC criterion. That is, as the

sample size n tends to infinity, -2log PSRQL(y)converges to AIC; of equation

(2.2).
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