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A new method for the representation of planar curves is proposed. Under
the uniform error criterion, this method uses the minimal number of
piecewise parabolic segments to approximate a discrete planar curve.
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A discrete planar curve is a point sequence on the XY-plane. In particular, it is called a
digital (or digitized) curve on the grid plane where the coordinates of each point are
integers. It is a well-known subject to fit a discrete planar curve with a continuous
curve. There are various kinds of methods for doing this, according to the need of the
applications.
Basically, a curve fitting problem concerns the efficient representation of the original
planar curve for the underlined purpose. For example, B-spline curve fitting can
produce smooth outlook for figure reconstruction or magnification. However, the
equations make optimality difficult on error controlling. On the other hand, piecewise
linear segments have their limitation to curved lines, though they can be computed
easily. In general, the error estimation and the storage consideration both are
important in many practical applications. Therefore, it is reasonable to reduce the
number of segments for a curve fitting under the corresponding error criterion.
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For this problem, we propose the following method:
(1) piecewise parabolic segments are used for the approximation;
(2) the endpoints between any two consecutive segments are constrained to lie on the
original curve;
(3) the uniform error criterion means that the Euclidean distance from each of the
original points to the approximate curve is within the specified error;
(4) the number of segments in the approximation is reduced as possible as it can be.
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We refer to some materials [1], [2], [3]. [4], [6], [7], [8], [9]. [10], [11], [12].
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Let S={p_i=(x_i,y_i)| i=1,2,...,n} be a planar curve. For each point p_k in S, define a
feasible set F_k={p_{k+1},p_{k+2},....p_{k+j}}, where j is a determined integer that
is still possible to approximate a segment from p_k to p_{k+j}. It is clear that j should
be as small as possible.

For each point p_k, define two values v_k and t_k in the following. When program
terminates, v_k denotes the minimal number of segments from p_1 to p_k and t_k
denotes the path for which a segment from p_{tk} to p_k is approximated. Therefore,
the optimal approximation of the curve from p_1 to p_k can be traced backward from
p_k with the value t_k. Let m denote the current number of segments during the
executing process. Corresponding to m, define the approximating set
A={p_{il}p_{i2},....p_{i{\ell}}} in the meaning that for each point p_k in A, we
can use the minimal number m of segments to approximate the points fromp_1top_k
within the error. We require any such point p_k to be in A.

The algorithm is described in the following.
begin{algorithm}
{Optimal Algorithm.}
procedure parabolic-approximation;
{ given a sequence of n points p_1, p_2,..., p_n,n>=3 }
initialize m:=0; B:={p_1}; v_k:=0, t_k:=0 for k=1,2,...,n.
while B\ne\emptyset do
begin
A:=B; B:=\emptyset; m:=m+1,
(0)for each point p_k in Ado
begin
(1find a feasible set F_k;
(2)for each pointp_jin F_k do
if v_j=0 then
begin
(3) try to approximate a segment from p_k to p_j;
if (3) can be done
then begin
V_j:=m; t_j:=k;
put p_j into B;
if j=n then return;
end; {if}
end; {if}{for}



end; {for}
end; {while}
\end{algorithm}

If there are multiple processors available, part (0) can be put into parallel computing.
When using a single processor, the points in this part can be processed with their
indexes from big to small for efficiency. We suggest that they be processed from the
inside to the outside ends alternatively; this may produce better segmentation of the
fitting curve. For example, if A= {2,3,4,5,7,9} for m=1 in the first approximation,
then these points are processed in the following order at the next iteration: 5, 4, 7, 3, 9,
2.

Part (1) can be obtained by the method used in ref. [8] or ref. [9]. As to part (3), we
first decide a tangent direction for each point indexed from 2 to n-1 in the beginning.
On testing if there is a parabola segment with endpoints p_k and p_j, we restrict the
search among those possible segments which also pass one point p_h between p_k
and p_j and with the prescribed tangent direction. Note that there is exactly one such
possible segment for each p_h. Suppose after coordinate transformation we have
p_h=(0,0) with X-axis as the tangent line, p_k=(x1,yl) with x1<0 and y1>0,
p_j=(x2,y2) with x2>0 and y2>0, then the parabola passing thru p_j, p_h, p_k with
X-axis as the tangent line at p_h has the following form: y=A(x+By)"2. Let C=y1/y2.
Then we have two solutions for B.

B1=(x1-sqrt{C}x2)/(sqrt{C}y2-y1)

B2= -(sqrt{C}x2+x1)/ (sqrt{C}y2+y1)

However, only one solution of B corresponds to a parabola that makes p_j and p_k
each separately locates on one of the two parts separated from p_h of the parabola. It
is the one which satisfies (x1+By1)(x2+By2)<0. We further need to test if each point
between p_k and p_j is within the specified error to this parabolic segment. Therefore,
unless line segment from p_k to p_j need to be used, this way of fitting a parabola
segment always works if there is just one point between p_k and p_j.

Besides this algorithm introduced here, the suboptimal approach (i.e., the scan-along
method) can be considered for time consuming. That is, we start from p_1, next find
the longest segment and continue the same process at the other terminal of the current
segment. Though this method may not reach the minimal number of segments, it
saves much time.
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This new method of fitting parabolic segments to a discrete planar curve is expected
to perform well for curved outline. It is not supposed to be used for curves with many
corners or sharp angles, to which the simple uniform linear approximation should be
used.
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