嘉南藥理科技大學專題研究計畫成果報告

沙門氏豬霍亂桿菌(Salmonella choleraesuis) 脂解酶基因 ly1 的核苷酸定序及分析

計畫主持人:張淑玉 共同主持人: 計畫參與人員:

執行單位:食品科技系

中華民國 93 年 2 月 20 日

脂解酶 *ly*1 基因,經核苷酸序列分析顯示此基因由 1509 個核苷酸組成,推 論的 502 個氨基酸經過比對,得知它是一種 carboxylesterase 基因,而其下游含 有兩個完整的 ORF(open reading fram),分別對應了兩個轉錄方向與 carboxylesterase 基因相反的 LysR transcriptional regulator 基因及 peptidase 基因, 在 peptidase 基因之後有一個不完整的 ORF,其對應了 Dipeptide transport protein。

前言

沙門氏桿菌(Salmonella)屬中的沙 門氏豬霍亂桿菌 (Salmonella choleraesuis),經流行病學的研究,是 豬特有的病原菌 (serotype-host specificity)(1,2,3,4), 豬感染後的症狀為 高弛張熱,但並無腸胃症狀,細菌可轉 移至淋巴組織(Pever's patch 即小腸淋 巴集結)及網狀內皮組織(肝、脾、骨髓) 導致系統性的疾病(systemic disease), 並引發致命性的菌血症及敗血症 (4,5)。雖然在豬飼料中添加抗菌性的添 加物,可以控制經由腸胃道的感染,但 卻無法完全杜絕沙門氏豬霍亂桿菌的 感染與傳播,其罹患率大約是10%,但 其死亡率卻很高,縱然痊癒,豬隻將變 成帶原者(carrier),進而持續性而不定 期的由排泄物釋出病原菌(4),由於發病 期的豬隻及帶原者皆不易診斷及偵 測,故造成了豬隻感染的潛在危機及經 濟上的損失,非僅如此,感染的豬隻亦 是人類感染沙門氏豬霍亂桿菌的病源 槽(6)。國外研究指出人類感染沙門氏豬 霍亂桿菌,常引發菌血症及敗血症,並 多方向轉移,引起膿腫性感染,但並無 腸胃性症狀,而死亡率為 16~20%(7,8,9) °

本研究從臨床分離到的 S.

choleraesui 菌株, 選殖到可能的致病因 子脂解酶基因 ly1, 作核苷酸的定序與 分析, 這對將來 S. choleraesui 菌株致 病因子之探討, 致病機制之解明, 皆有 相當多的助益。

材料與方法

(1) 構築對人體巨噬細胞致死性較原 菌株差之沙門氏豬霍亂桿菌變異 株

(a) 以Transposon Tn5構築沙門氏豬霍 亂桿菌變異株

採用 Hensel 等人所提之方法 稍作改變來構築沙門氏豬霍亂桿菌 變異株(10)。將帶有 transposon Tn5 質體之大腸桿菌 *E. coli* S17-1 λpir (Tp^r Sm^r recA thi pro hsdR⁻ M⁺ RP4:2Tc:Mu:Km T7, λpir) 和 對 Tetracycline 具 抗 性 的 *S. choleraesuis* SC-1 進行接合生殖 (conjugation).

(b) 篩選對人體巨噬細胞致死性差之沙 門氏豬霍亂桿菌變異株

由於被 Salmonella spp.感染之老 鼠或人類巨噬細胞(macrophage)會 經由兩個不同的機制引發細胞快速 或遲延地凋凌死亡(apoptosis)而釋 出 lactate dehydrogenase (LDH) (11),因此經由巨噬細胞存活試驗 (macrophage survival assays)(12) 及 非放射性細胞毒性試驗(The Cyto Tox 96 non-radioactive cytotoxicity assay) (Promega)(11) 試驗,加入 LDH 的受質(substrate), 測 490 nm 的吸光值便可知道 LDH 被巨噬細 胞釋出之量,而得知巨噬細胞存活 的情形。取 S. choleraesuis SC-1 的 Tn5 變異株,感染老鼠的 Bone marrow-derived macrophages(BMMs) 或 Peritoneal macrophages (13),篩 選對老鼠巨噬細胞致死性較原菌株 (wild type)差之沙門氏豬霍亂桿菌 變異株。

(2) Transposon Tn5 插入位置的分析

抽取各個 Tn5 變異株(sa1~sa2 突 變株)的染色體 DNA,分別以 BgII, EcoRI, KpnI, PstI 和 SalI 作切割 (transposon 不含有這 5 種限制酶的切 割 位),經南方點墨法(Southern hybridization),以 α -³²P-labeled kanamycin gene 充當探針,選擇經限制 ¹⁷⁷切割後而含有 transposon 的 DNA 片 段,由這些大小不等的 DNA 片段中, 找出較適當的長度者(大於 10 kb,小於 20 kb),經此實驗決定將來的實驗採用 EcoRI 來切割 Tn5 變異株的染色體 DNA。

(3) 致病基因(virulence gene)之選殖

以 EcoRI 分別切割 Tn5 變異株的 染色體 DNA,並將其插入同樣經 EcoRI 切割過的 pUC19 質體,將這些重組過 的質體 DNA 轉型到 E. coli XL1B,經 含有 Kanamycin 的培養基篩選得到成 功的轉型子(transforment),將此轉型子 的質體 DNA(含有 transposon)抽出,並 以 P6 和 P7 引子分別讀出 transposon 側 邊之核苷酸序列(10),此即為致病基因 的部分核苷酸序列。

完整致病基因的選殖,乃採用菌落 雜交法(colony hybridization)得到,取先 前已構築好的 S. choleraesuis SC-1 基因 庫(將 S. choleraesuis SC-1 的染色體 DNA 以 Sau3AI 切割成 5~10 kb 大小 不等的 DNA 片段,並將其插入經 BamHI 切割過的 pBR322 質體),轉型 到 E. coli XL1B,以 α -³²P-labeled 致病 基因的部分核苷酸序列充當探針,進行 菌落雜交。

結果和討論

接合轉型子(transconjugants)經同時含有Kanamycin及Tetracycline的培養基篩選得到2000株,並檢測其對Ampicillin的敏感性,確認其為S. choleraesuis SC-1的Tn5變異株。從這些Tn5變異株篩選對老鼠巨噬細胞致死性較原菌株(wild type)差之沙門氏豬 霍亂桿菌變異株,得到6株Tn5變異株 分別命名為sal~sa6突變株。用EcoRI 來切割Tn5變異株的染色體DNA,並 將其插入同樣經EcoRI切割過的 pUC19質體,經含有Kanamycin的培 養基篩選得到成功的轉型子 (transforment),並以P6和P7引子分別 讀出transposon側邊之核苷酸序列。

以 α -³²P-labeled 致病基因的部分 核苷酸序列充當探針,進行菌落雜交, 將雜交到的菌落質體抽出並加以定 序,可得到完整的致病基因。將選殖出 含有可能致病基因(virulence gene)的 DNA 片段,進行自動核苷酸序列分 析,顯示此 DNA 片段的 Map 圖(Fig. 1),由三個完整的基因及一個部分的基 因所構成。由於 Transposon Tn5 所插入 的位置是脂解酶 *l*y1 基因,因此基因的 轉型子可使含有橄欖油的培養基產生 透明環,故命名爲脂解酶 *l*y1 基因,而 此脂解酶 *l*y1 基因可能是致病基因。

脂解酶 *ly*1 基因,經核苷酸序列分 析顯示此基因由 1509 個核苷酸組成, 推論的 502 個氨基酸經過比對,得知它 是一種 carboxylesterase 基因(Fig. 2),而 其下游含有兩個完整的 ORF(open reading fram),分別對應了兩個轉錄方 向與 carboxylesterase 基因相反的 LysR transcriptional regulator(Fig. 3)基因及 peptidase 基因(Fig. 3),在 peptidase 基 因之後有一個不完整的 ORF,其對應了 Dipeptide transport protein(Fig. 4)。

LysR transcriptional regulator 基 因,與 carboxylesterase 基因的轉錄方向 相反,兩基因間有 14 個核苷酸序列是 重疊的,分析 carboxylesterase 基因的上 游核苷酸序列,在轉譯啓始點上游 87 個核苷酸處,含有兩個重疊的 TN₁₁A 核 苷酸序列,符合了 LysR family 的調控 特徵,故推論此 carboxylesterase 基因的 表現乃受其下游的 LysR transcriptional regulator 基因所調控。其相關的證明實 驗及此基因與致病機制之關係,則有待 將來進一步的闡明。

參考文獻

1. Lawson, G. H. K., and C. Dow. 1965.

The pathogenesis of oral *S. choleraesuis* infection in pigs. J. Comp. Pathol. 75:75-81.

- Baskerville, A., and C. Dow. 1973. Pathology of experimental pneumonia in pigs produced by *Salmonella choleraesuis*. J. Comp. Pathol. 83:207-215.
- Griffith, R. W., and T. T. Kramer. 1981. Sensitivity of smooth Salmonella choleraesuis var. Kunzendorff field strains to antibody and complement under various conditions. Am. J. Vet. Res. 45:59-66.
- Wilcock, B. P. and K. J. Schwartz Schwartz. 1992. Salmonellosis. In diseases of Swine, 7th edn, pp. 570-583. Edited by A. D. Leman and others. Ames, IA: Iowa State University Press.
- Morehouse, L. G. 1972. Salmonellosis in swine and its control. J. Am. Vet. Med. Assoc. 160:593-601.
- Berends, B. R., F. van Knapen, J. M. Snijers, and D. A. Mossel. 1997. Identification and quantification of risk factors regarding *Salmonella* spp. On pork carcasses. Int. J. Food Microbiol. 36:199-206.
- MacCready, R. A., J. P. Reardon, and I. Saphra. 1957. Salmonellosis in Massachusetts: a sixteen-year experience. N. Engl. J. Med. 256:1121-1128.
- Saphra, I., and J. H. Winter. 1957. Clinical manifestations of Salmonellosis in man: an evaluation

of 7,779 human infections identified at the New York Salmonella Center. N. Engl. J. Med. 256:1128-1134.

- Schmeiger, H. 1972. Phage P22 mutants with increased or decreased transduction abilities. Mol. Gen. Genet. 119:75-88.
- Hensel, M., J. E. Shea, C. Gleeson, M. D. Jones, E. Dalton, and D. W. Holden. 1995. Simultanneous identification of bacterial virulence genes by negative selection. Science 269: 400-403.
- Monack, D. M., C. S. Detweiler, and S. Falkow. 2001. Salmonella pathogenicity island 2-dependent macrophage death is mediated in part

by the host cysteine protease caspase-1. Cell Microbiol. 3(12): 825-837.

- 12. Monack, D. M., B. Raupach, A. E. Hromockyj, and S. Falkow. 1996. Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc Natl Acad Sci USA 93: 9833-9838.
- Warren, M. K. and S. N. Vogel. 1985. Bone marrow derived macrophages: development and regulation of differentiation markers by colony-stimulating factor interferons. J. Immunol. 134: 982-989.

Fig. 1. The map of DNA fragment including virulence gene.

CACCTACGAGGATTTTCTGCCCGTCAGCGCGGGGGGGGCTCTTCCAGTCGAATCTTGGCAA	
TGAAACGCAGGCGCGCGCCACGGCAATGCCGCGCAATGCCTTCGAAGCCGCGCTCGG	
CTGTGCGGTGT <mark>ACGACGAGTT</mark> TT <mark>CGCTTTACG</mark> AGGAGGCGGAAGCGCGCAGCAAACAAGC	
GTTGCGGTTTGCTCTTGAAACCGTTACTCTGCAAGGGTGTGATGGAAAAAG <mark>AAGG</mark> TTGGT	
ATGGAAAAATCCTCCGCCCTGTGGTTGAAACGCGCCAGGGCGCACTGATTGGTTTTACT	60
M E K S S A P V V E T R Q G A L I G F T	
GAAGGCGATACCCATGTGTGGGTGTGGCATTCCCTATGCGGCACCCCCTGTTGGCCCGTGG	120
E G D T H V W C G I P Y A A P P V G P W	
CGCTGGCGCTCCCCGCGTCCCCCTGCACGCTGGGATGGCGTGCGT	180
R W R S P R P P A R W D G V R P A T A F	
TCCGCCTCCAGCTGGCAGAGCAGCGAAAGCTGTCAGGAGCTGGGCGGCGGCGACCCCGGC	240
S A S S W Q S S E S C Q E L G G G D P G	
CAGTTCTCTGAAGACTGCCTGTATCTTAACGTCTGGTCGCCAGTGGCTCGCGCCGCTCCG	300
Q F S E D C L Y L N V W S P V A R A A P	
CTTCCGGTGATGGTCTGGCTGCACGGCGGAGGATTTACCCTCGGCGCGGGCTGCCT	360
L P V M V W L H G G G F T L G A G G L P	
CCGTATAACGGCAGGGCGCTGGCGAAGCGTGGCACGGTGGTGGTGACGATCAATTACCGT	420
PYNGRALAKRGTVVVTINYR	
CTCGGCCACCTCGGCTTTTTTGCCCATCCGGCGCTGGAGGGGGGGG	480
LGHLGFFAHPALEGEERVV	
CATAACTTTGCACTGCTCGATCAGATTCAGGCCCTGGAATGGGTGCGCGATAACATTGCC	540
H N F A L L D Q I Q A L E W V R D N I A	
GCGTTCGGCGGCGATCCTGAGAACATCACCGTATTTGGCGAGTCGGCCGGTGCGCGCAGC	600
A F G G D P E N I T V F G E S A G A R S	
GTGCTGTCGCTGATGGCTTCCCCGCTTGCGGGGGGGCTGTTCCATAAAGCCATTGTGCAA	660
V L S L M A S P L A G G L F H K A I V Q	
AGCGGGTACACGCTGCCCGACACCCCGCGCGAGCAGGCCATGCATAAAGGCGAAGCGATT	720
S G Y T L P D T P R E Q A M H K G E A I	
GCCGCCCATTTCGGCCTGCACAGTGCTACCGCGGAACAGCTTCGCGCGATCCCGCCTGAG	780
A A H F G L H S A T A E Q L R A I P P E	
GCGTTCTGGCCGCTGACCTCGCCGCTGAATATCGCCCCTGCGCCCATCGTGGGGGGATTGC	840
A F W P L T S P L N I A P A P I V G D C	
GTTTTGCCTGAGGCCATGCTCGACGTTTTCTTCGCGGCCCGCCAGCATCCTGTACCGGTG	900
V L P E A M L D V F F A A R Q H P V P V	
ATG ATTGGGTCGAACAGCGACGAAGCCAGCGTG <mark>ATG</mark> TCGGTATTCGGGGTCGATCTGGCC	960
M I G S N S D E A S V M S V F G V D L A	
GGGCAGATCCAGAAGCTCCGCCGTGAGCGGCGCTTTGGCCTGGGGTTGATAAAGCTGCTT	1020
G Q I Q K L R R E R R F G L G L I K L L	

TAT	CCT	GGC	GTGA	AAG	GGC	GAT(GAG	GAA	CTC	GGCZ	AGG	CAGO	GTA	FGC	CGC	GAC	ATG(GCC	ГТС	1080
Y	Ρ	G	V	K	G	D	Ε	Ε	L	G	R	Q	V	С	R	D	М	A	F	
ACC.	ACC	ATG	GGA:	TAC	GTG	GTA	ATG	CAG	GCC	CAG	CAGO	CGGC	GCG	GGC	GGC	CTG	IGC	ГGG	CGA	1140
Т	Т	М	G	Y	V	V	М	Q	A	Q	Q	R	A	G	G	L	С	W	R	
TAC	I'GG'	TTT(GAT	TAT(GTG	GCC	GAA	GCG	GAG	CAC	GCGA	ACGI	TACA	ATC	AAC	GGC	GCC	IGG	CAC	1200
Y	W	F	D	Y	V	A	Ε	A	Ε	Η	А	Т	Y	I	N	G	A	W	Н	
GGC.	AAC	GAA	AAA	GTG	CCC	FAC	GTC	TTC(GAT	ACC	CTTC	GGA	CAG	GTG	GAA	CCT	TCG	CGG	CAG	1260
G	Ν	Ε	K	V	Ρ	Y	V	F	D	Т	L	G	Q	V	Ε	Ρ	S	R	Q	
TAT	GTG	AAT	GAA	CGC	GAT	CTG	GCC	FTC	GCC	GCT	CAGO	GTGC	GCG(GAC	[AC:	rgg	GTG	AGC	TTC	1320
Y	V	Ν	Ε	R	D	L	А	F	А	А	Q	V	Α	D	Y	W	V	S	F	
GCC	CGG	GAT	GCG	GGG	GCA	CGC	GATA	AGC	CTG	GCA	GGG	CCCA	ACG	CGC	rgg	CCC	GCC	rgc(CGG	1380
A	R	D	A	G	A	R	D	S	L	A	G	Ρ	Т	R	W	Ρ	A	С	R	
AAA	GGG	CGG	GAC	GTG	CTG	TTA	CGTA	ATT	GGT	GTGZ	AATA	AAA	CATO	GCA	GGT	rtt(CGG	CTT	GAA	1440
K	G	R	D	V	L	г	R	Ι	G	V	Ν	K	Η	A	G	F	R	L	Е	
AAC	CGC	TTC	ATG	CGT	GCC	CGT	ATGZ	AGC	CTC	TTC	AAA	CGGC	GTG	ATG	AAA	CAC	CAC	GTC	AGC	1500
Ν	R	F	Μ	R	A	R	М	S	L	F	K	R	V	М	K	Н	Н	V	S	
CTC	GAC	TGA	GCA	GAC	AGG	CGC	GAA	ACG	CAT	CCA	GCCC	CGTI	TTT(CAG	GGC	CGG	GGG	CGT	CGC	1560
L	D	* * *															1			
GTA.	ATA	CCA	GCC	GGTZ	AGC	rcg	ccc	CCG	TTT	TTA	rgcı	rcgi	[GT(CAA	AAG	GGC	GCA:	TCA(GCC	
GTC	CGG	CGC	GCA	CGT	ССТО	CCT	CCAC	CCA	GCG	TTT	CATO	CCG	CGA	[GG	CGA	FGC	CCA	GCC	CCT	
GAA	TGG	CGG	CGG	TAA'	rgg(CGA	GATO	CCA	TGG	TTT	CGAA	AGTO	GTT(GAT	FTT	rga(GCA	TAG	CTG	
GCG	GCG	GAC	CCG	GCT	GTT	FCG	CCAC	GCC	ACA	GCG	FCCF	AGTO	CCG	[TT]	rgt(CCC	GCG	rgg	GGT	
GAA	GGA	AGG	TGA	GTG	CTT	CAG	CGCZ	AGA	GCC	GGC	CCGI	TAGO	CGGC	GCT	CAT	CAC	CGG	GGT	TAA	
GGC	CTC	TTC	GAA	CAA	GCA	GAT	CGCC	CGG	CGC	r 🧹	12									

Fig. 2. The nucleotide sequence of carboxylesterase

${\tt GCTTTTCATCATTTATTCCTGTCTTTTTAATTCGACGGCTAATTACTTCTTTTGCCATTTCCTTTTGCCATTTCCTTTTGCCATTTCCTTTTGCCATTTCCTTTTGCCATTTCCTTTTGCCATTTCCTTTTGCCATTTCCTTTTGCCATTTCGACGCCTAATTAAATAAA$	
ATGGGCTCGGAACTCTCCAGACAATTAACCCAACGCTTTTTCCGCTATCTCGCCATCACC	60
M G S E L S R Q L T Q R F F R Y L A I T	
AGCCAGAGCGACCCGAAAGTCAAAACCCTGCCCTCCACCCCGGGCCAGCACGACATGGCG	120
S Q S D P K V K T L P S T P G Q H D M A	
CGGGAGCTGGCGAAGGAGCTGGAAACGCTGGGGTTAGACGATATTGTGATTGAT	180
R E L A K E L E T L G L D D I V I D E F	
GCCACCGTTACCGCCGTGAAAAAAGGTAATGTTCCCGGCGCGCGC	240
A T V T A V K K G N V P G A P R I G F I	
ACCCATATCGACACCGTCGACGTCGGTTTATCCCCCGGATATTCATCCACAAATATTAACC	300
T H I D T V D V G L S P D I H P Q I L T	
TTTACGGGGGATGATCTCTGTCTGAATAAAGAGAAAGATATTTGGCTGCGCGTAAAAGAG	360
F T G D D L C L N K E K D I W L R V K E	
CACCCGGAAATTCTGGCTTATCATGATGAGGAGATTATTTTCAGCGACGGAACCAGCGTA	420
H P E I L A Y H D E E I I F S D G T S V	
TTAGGCGCAGATAATAAAGCGGCCGTCACCGTGGTCATGACGGTGCTGGAAAACCTCACC	480
LGADNKAAVTVVMTVLENLT	
GCTGAGCACAACCATGGCGATATTGTGGTGGCGTTTGTGCCCGATGAAGAGATTGGCCTG	540
A E H N H G D I V V A F V P D E E I G L	
TGCGGCGCGAAAGCGCTGGATTTAAAGCGCTTCGACGTCGATTTTGCCTGGACCATCGAC	600
CGAKALDLKRFDVDFAWTID	
TGCTGCGAGCTGGGCGAAATTGTTTACGAGAACTTTAACGCGGCGGCGGCGGCTGAAATTCGC	660
CCELGEIVYENFNAAAEIR	
TTTACCGGCGTCACGGCGCACCCGATGTCCGCCAAAGGGGTGCTGGTCAATCCGCTGCTG	720
FTGVTAHPMSAKGVLVNPLL	
ATGGCAACGGATTTCATCAGCCATTTCGATCGCCGGCAAACCCCCGGAATGCACCGAGGGG	780
MATDFISHFDRROTPECTEG	
	840
REGYTWENGTOAGONEAVIK	
	900
	500
	960
	500
	1020
	1020
	1080
	1000
	1140
	1140
	1000
ACCELARITCETCTEARAACCECCTACCTECCECECECECECECECECECECECECE	IZUU
	1060
CAGGIGGAGUGUGAAUAGUUGGAAUIUUAGATTGUGUTGAUAUUAUUGATUAUAUUGATUAUAUUG	120U
у ч в к в у Р в ц у І А Ц Т Р Р Р Г Т Т	

TCZ	AATT	TCA	AAA	ACCO	GAAD	rcc:	IGTO	GACO	GCG	GCGF	ATTO	GTG	TTT(GGGI	ACG	CAC	ATGA	ATGA	ACCG	1320
S	I	S	K	Ρ	Ν	Ρ	V	Т	R	R	L	С	L	G	R	Т	* *	*		
																	М	М	Т	
CC	GGCG	ATC	TGC	CTGI	TCC	GAA	GAGO	GCC	ΓTΑ <i>Ι</i>	ACCO	CCGG	GTGZ	ATGZ	AGC	CCG	CTA	CGG	GCC	GGCT	1380
A	G	D	L	L	F	Ε	Ε	А	L	Т	Ρ	V	М	S	Ρ	L	R	А	G	
CT	GCGC	TGG	GAAG	GCAC	CTCA	ACC	TTCC	CTTC	CAC	CCCF	ACGC	CGG	GAC	AAA	ACG	GAC	rgg <i>i</i>	ACG	CTGT	1440
S	A	L	Е	А	L	Т	F	L	Н	Ρ	Т	R	D	K	Т	D	W	Т	L	
GG	CTGG	CGA	AAC	CAGC	CCG	GGT(CCG	CCG	CCAC	GCTA	ATGO	CTC	AAA	AAT(CAA	CAC	TTC	GAAA	ACCA	1500
W	L	A	K	Q	Ρ	G	Ρ	Ρ	Ρ	А	М	L	K	Ν	Q	Η	F	Е	Т	
TG	GATC	TCG	CCA	ATTA	ACCO	GCC	GCCA	ATTO	CAG	GGGC	CTGG	GGCZ	ATC	GCCA	ATC	GCG	GAT	GAAZ	ACGC	1560
М	D	L	A	I	Т	А	А	I	Q	G	L	G	I	А	I	A	D	Ε	Т	
TG	GTGG	AGG	AGG	GACO	GTGC	CGC	GCCC	GGA	CGG	CTGA	ATGO	CGC	CCT	TTTC	GAC	ACGZ	AGCZ	ATA	AAAA	1620
L	V	Ε	Ε	D	V	R	А	G	R	L	М	R	Ρ	F	D	Т	S	Ι	K	
CG	GGGG	CGA	GCI	ACC	CGGC	CTG	GTAI	TAC	CGCC	GACO	GCCC	ccc	GGC	ССТО	GAAZ	AAC	GGG	CTG	GATG	1680
Т	G	A	S	Y	R	L	V	L	R	D	A	Ρ	G	Ρ	Е	Ν	G	L	D	
CG	FTTC	GCG	CCI	GTC	CTGC	CTCA	AGTO	CGA	GGC	ГGАC	CGTO	GGT	GTT:	rca:	CAG	CCC	GTT	rga <i>i</i>	AGAG	1740
A	F	R	A	С	L	L	S	R	G	* * *										
GC:	FCAT	ACG ממדי	GGC		CA3	rgaz rcco	AGCO	GT:	FTT(FCC(GAA		CTG	CAT	GTT: FGG(CACC	
			.0110								1000			1000		1000				

Fig. 3. The nucleotide sequence of dipeptidase

TTCCGAGCCCATAGTGTTTCCTTCTGTATTTATTTTTCATGTGTTTGCGCCATCACTTT	7
ATGTTATTTATGAAATGGCAAAAGAAGTAATTAGCCGTCGAATTAAAAAGACAGGAATAA	Į
ATGATGAAAAGCACATTCACAATGATAACGCTGGCGCTTGCTGCACTGACGGTCAGTTC	C 60
M M K S T F T M I T L A L A A L T V S S	
ACCGTCGCGGCAAAAACGCTGGTGTATTGCTCCGAAGGATCGCCGGAAAATTTCAATCC	г 120
T V A A K T L V Y C S E G S P E N F N P	
CAGCTCTATACGTCGGGGGACCAGCGTGGACGCCAGCGCCGTACCGGTTTATAACCGTCT	G 180
Q L Y T S G T S V D A S A V P V Y N R L	
GTCGATTTCAAACCGGGCACTACCGAACTGGTACCGAGCCTGGCGGAAAGCTGGGAGGTA	A 240
V D F K P G T T E L V P S L A E S W E V	
AGCGAGGATGGCAAGGTCTACACCTTCCACCTGCGCAAAGGGGTGAAATTCCACAGTAA	г 300
S E D G K V Y T F H L R K G V K F H S N	
AAGCTGTTCACGCCGACGCGCGCGACTTCAACGCGGACGACGTGATTTTCTCGTTTTTGCG	C 360
K L F T P T R D F N A D D V I F S F L R	
CAGAAGGATGTGAATCATCCTTACCATAACGTCTCCAACGGCAGTTATTCCAACTTCGAA	420
Q K D V N H P Y H N V S N G S Y S N F E	
AGTCTGGAGTTCGGCAGCCTGATTACCGCCATTGATAAAGTTGACGATCGCACCGTGCG	2 480
S L E F G S L I T A I D K V D D R T V R	
TTCACCCTGGCGCATCCGGAAGCGCCGTTTGTCGCTGACCTGGCGTGGTACTTTGCCTC	540
FTLAHPEAPFVADLAWYFAS	
ATTCTGTCGGCGGAGTACGCCGATGCCATGCTGAAAGCGGGCACGCCAGAAAAGGTCGA	г 600
ILSAEYADAMLKAGTPEKVD	
ATGCAGCCGATTGGCACCGGCCGTTTAAGCTGTCGCAATATCAGAAGGATTCCCGCATC	660
M Q P I G T G R L S C R N I R R I P A S	
TCTTTACCGCTTTCCCTGACTACTGGCAGGGAAAATCGAAGCTGGATCGTCTGGTGTTCA	A 720
S L P L S L T T G R E N R S W I V W C S	
CCATCACGCCGGACGCCTCGGTACGTTTTGCCAAAGTTCGAGAAGAATGAGTGTCAGGT	G 780
P S R R T P R Y V L P K F E K N E C Q V	
ATGCCGTTCCCGAACCCGGCGGACCTGCCGCGTATGAAGGCTAACAAAGACATCAACCT	G 840
M P F P N P A D L P R M K A N K D I N L	
ATGAGCAAGGCCGGTCTGAATACCGGTTTCCTGGCGTTTAATACGCAAAAGCCGCCGCT	g 900
M S K A G L N T G F L A F N T Q K P P L	
GATAACGTACAAGTGCGCCAGGCGCTGGCGATGGCGATTAACAAACCGGCCATCATTGA	g 960
D N V Q V R Q A L A M A I N K P A I I E	
GCGGTTTTCCACGGCACCGGCACGGCGGCGAAAAACCTGCTGCCGCCTGGCGTCTGGAG	r 1020
A V F H G T G T A A K N L L P P G V W S	
GCCGACAGTGAGCTGAAAGACTACGATTACGATCCAGAAAAAGCGAAAGCGCTGTTAAA	G 1080
A D S E L K D Y D Y D P E K A K A L L K	

1140	CCG	CGG	CAA	GTG	CCC	ATG	GCC	TGG	CTG	GAT	ATC	AGC	GTA	GGC	AAC	GCC	TTT	GGG	GCG	GAG
	Ρ	R	Q	V	Ρ	М	A	W	L	D	I	S	V	G	Ν	A	F	G	А	Ε
1200	GGC	GTT	AAA	GCG.	TGG	GAC	GCG	CAG	ATC	ATG	GAG	GCG	ATG	CGT	AAG	GCG	AAC	CCG	'AAC	TAT
	G	V	K	A	W	D	A	Q	I	М	Ε	A	М	R	K	A	Ν	Ρ	Ν	Y
1260	GGG	GGC	AAG	GTG	CGC	AAG	CTG	TAC	GAA	GGC	TGG	GAA	TAC	ACC	GTG	ATC	AAA	ACC	CAG	GTG
	G	G	K	V	R	K	L	Y	Ε	G	W	Ε	Y	Т	V	I	K	Т	Q	V
1305						GAT	GGG	ACG	GCG	ACG	ACA	TGG	GGC	ATG	CTG	GCG	GCT	CAG	CAT	GAG
						D	G	Т	А	Т	Т	W	G	М	L	А	А	Q	Н	Ε

Fig. 4. The partial nucleotide sequence of dipeptide transport protein

