Synthesis and Evaluation of Aliphatic-chain Hydroxamates Capped with Osthole Derivatives as Histone Deacetylase Inhibitors

Shih-Wei Chao (趙世偉)a, Ching-Chow Chenb, Chen-Yui Yangc, Yun-Chieh Linb, Chia-Chun Yuc, Jih-Hwa Guhc, Chiao-I Kuod, Ping Yanga, Chung-I Changd*, Wei-Jan Huanga*

aGraduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
bDepartment of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
cSchool of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
dInstitute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan

Our previous studies have demonstrated that osthole, a Chinese herbal compound, could be incorporated into the hydroxycinnamamide scaffold of LBH-589, a potent HDAC inhibitor, as an effective hydrophobic cap; the resulting compounds showed significant potency against several HDAC isoforms. Here, we presented a series of osthole derivatives fused with the aliphatic-hydroxamate core of suberoylanilide hydroxamic acid (SAHA), a clinically-approved HDAC inhibitor. Several compounds showed potent activity against nuclear HDACs comparable. Further assays against individual HDAC isoforms revealed that some compounds showed not only SAHA-like activity towards HDAC1, -4 and -6, they inhibited HDAC8 by log difference than SAHA and thus exhibited a broader HDAC inhibition spectrum. Among them, compound 6g showed multiple significant cellular effects towards human prostate cancer cells.